Prospective Memory (PM) entails a set of executive processes primarily associated with the activation of frontal and parietal regions. Both the number of PM-targets to be monitored (i.e. task load) and the relationship between the type of PM-targets and the ongoing (ONG) task (i.e. task focality) can impact executive monitoring and PM performance. In the present imaging study, we manipulated load and focality of an event-based PM task to test the hypothesis that common resources engage in situations requiring high levels of cognitive control: that is, in high-load (i.e. monitor multiple PM-targets) and non-focal conditions (i.e. monitor at the same time letters' identity and color). We investigated monitoring-related and detection-related processes by assessing behavior and brain activity separately for ONG trials (monitoring) and PM-targets (detection). At the behavioral level, we found a significant interaction between load and focality during detection, with slowest reaction times for focal, high-load PM-targets. The imaging analyses of the detection phase revealed the activation of the left intraparietal sulcus in the high-load conditions. Both in the monitoring and the detection phases, we found overlapping effects of non-focality and low-load in the fusiform gyrus. Our results suggest that under low-load conditions, cognitive control operates via early selection mechanisms in the ventral occipito-temporal cortex. By contrast, high-load conditions entail control at later processing stages within the dorsal parietal cortex. We conclude that load and focality operate via different mechanisms, with the level of task load largely determining how cognitive control selects the most relevant information.

Prospective memory: the combined impact of cognitive load and task focality

Mastroberardino, S;
2023

Abstract

Prospective Memory (PM) entails a set of executive processes primarily associated with the activation of frontal and parietal regions. Both the number of PM-targets to be monitored (i.e. task load) and the relationship between the type of PM-targets and the ongoing (ONG) task (i.e. task focality) can impact executive monitoring and PM performance. In the present imaging study, we manipulated load and focality of an event-based PM task to test the hypothesis that common resources engage in situations requiring high levels of cognitive control: that is, in high-load (i.e. monitor multiple PM-targets) and non-focal conditions (i.e. monitor at the same time letters' identity and color). We investigated monitoring-related and detection-related processes by assessing behavior and brain activity separately for ONG trials (monitoring) and PM-targets (detection). At the behavioral level, we found a significant interaction between load and focality during detection, with slowest reaction times for focal, high-load PM-targets. The imaging analyses of the detection phase revealed the activation of the left intraparietal sulcus in the high-load conditions. Both in the monitoring and the detection phases, we found overlapping effects of non-focality and low-load in the fusiform gyrus. Our results suggest that under low-load conditions, cognitive control operates via early selection mechanisms in the ventral occipito-temporal cortex. By contrast, high-load conditions entail control at later processing stages within the dorsal parietal cortex. We conclude that load and focality operate via different mechanisms, with the level of task load largely determining how cognitive control selects the most relevant information.
2023
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1563737
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact