A k-page upward book embedding (kUBE) of a directed acyclic graph G is a book embeddings of G on k pages with the additional requirement that the vertices appear in a topological ordering along the spine of the book. The k UBE Testing problem, which asks whether a graph admits a kUBE, was introduced in 1999 by Heath, Pemmaraju, and Trenk (SIAM J Comput 28(4), 1999). In a companion paper, Heath and Pemmaraju (SIAM J Comput 28(5), 1999) proved that the problem is linear-time solvable for k= 1 and NP-complete for k= 6 . Closing this gap has been a central question in algorithmic graph theory since then. In this paper, we make a major contribution towards a definitive answer to the above question by showing that k UBE Testing is NP-complete for k≥ 3 , even for st-graphs, i.e., acyclic directed graphs with a single source and a single sink. Indeed, our result, together with a recent work of Bekos et al. (Theor Comput Sci 946, 2023) that proves the NP-completeness of 2UBE for planar st-graphs, closes the question about the complexity of the kUBE problem for any k. Motivated by this hardness result, we then focus on the 2UBE Testing for planar st-graphs. On the algorithmic side, we present an O(f(β) · n+ n3) -time algorithm for 2UBE Testing, where β is the branchwidth of the input graph and f is a singly-exponential function on β . Since the treewidth and the branchwidth of a graph are within a constant factor from each other, this result immediately yields an FPT algorithm for st-graphs of bounded treewidth. Furthermore, we describe an O(n)-time algorithm to test whether a plane st-graph whose faces have a special structure admits a 2UBE that additionally preserves the plane embedding of the input st-graph. On the combinatorial side, we present two notable families of plane st-graphs that always admit an embedding-preserving 2 UBE.
Upward Book Embeddability of st-Graphs: Complexity and Algorithms
Binucci C.;Di Giacomo E.;Didimo W.;
2023
Abstract
A k-page upward book embedding (kUBE) of a directed acyclic graph G is a book embeddings of G on k pages with the additional requirement that the vertices appear in a topological ordering along the spine of the book. The k UBE Testing problem, which asks whether a graph admits a kUBE, was introduced in 1999 by Heath, Pemmaraju, and Trenk (SIAM J Comput 28(4), 1999). In a companion paper, Heath and Pemmaraju (SIAM J Comput 28(5), 1999) proved that the problem is linear-time solvable for k= 1 and NP-complete for k= 6 . Closing this gap has been a central question in algorithmic graph theory since then. In this paper, we make a major contribution towards a definitive answer to the above question by showing that k UBE Testing is NP-complete for k≥ 3 , even for st-graphs, i.e., acyclic directed graphs with a single source and a single sink. Indeed, our result, together with a recent work of Bekos et al. (Theor Comput Sci 946, 2023) that proves the NP-completeness of 2UBE for planar st-graphs, closes the question about the complexity of the kUBE problem for any k. Motivated by this hardness result, we then focus on the 2UBE Testing for planar st-graphs. On the algorithmic side, we present an O(f(β) · n+ n3) -time algorithm for 2UBE Testing, where β is the branchwidth of the input graph and f is a singly-exponential function on β . Since the treewidth and the branchwidth of a graph are within a constant factor from each other, this result immediately yields an FPT algorithm for st-graphs of bounded treewidth. Furthermore, we describe an O(n)-time algorithm to test whether a plane st-graph whose faces have a special structure admits a 2UBE that additionally preserves the plane embedding of the input st-graph. On the combinatorial side, we present two notable families of plane st-graphs that always admit an embedding-preserving 2 UBE.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.