The aim of this work was the formulation and characterization of alginate (ALG)–doxycycline (DOX) hydrogel microparticles (MPs) embedded into Pluronic F127 thermogel for DOX intradermal sustained delivery. ALG–DOX MPs were formed by adding a solution of the drug into a 1.5% polymer solution while stirring. The MPs were cross-linked by dispersion into a 1.2% CaCl2 solution. Free MPs were characterized in terms of size, drug content, and release behavior by HPLC and UV–vis. DOX and hydrogel MPs were embedded into PF127, PF127-HPMC, and PF127-Methocel thermogels. The thermogels were characterized in terms of gelling time, morphology, and release behavior. A target release period of 4–7 days was considered optimal. The hydrogel MPs were about 20 µm in size with 90% of the population <59 µm. Drug content was about 35% (w/w). DOX released rapidly from the MPs, 90% within 2 days. An expected faster release was observed for free DOX from the thermogels with 80–90% of drug released after 3.5–4 h even in the presence of 1% HPMC or Methocel. The release was sustained after embedding the MPs into PF127 and PF127-HPMC thermogels. In particular, the PF127-HPMC thermogel showed an almost linear release, reaching 80% after 3 days and 90% up to 6 days. Although a further characterization and formulation assessment is required to optimize MP characteristics, ALG/DOX-loaded hydrogel MPs, when embedded into a PF127-HPMC thermogel, show a potential for achieving a 7-day sustained release formulation for DOX intradermal delivery
Formulation and Release Behavior of Doxycycline–Alginate Hydrogel Microparticles Embedded into Pluronic F127 Thermogels as a Potential New Vehicle for Doxycycline Intradermal Sustained Delivery
GIOVAGNOLI, Stefano;
2010
Abstract
The aim of this work was the formulation and characterization of alginate (ALG)–doxycycline (DOX) hydrogel microparticles (MPs) embedded into Pluronic F127 thermogel for DOX intradermal sustained delivery. ALG–DOX MPs were formed by adding a solution of the drug into a 1.5% polymer solution while stirring. The MPs were cross-linked by dispersion into a 1.2% CaCl2 solution. Free MPs were characterized in terms of size, drug content, and release behavior by HPLC and UV–vis. DOX and hydrogel MPs were embedded into PF127, PF127-HPMC, and PF127-Methocel thermogels. The thermogels were characterized in terms of gelling time, morphology, and release behavior. A target release period of 4–7 days was considered optimal. The hydrogel MPs were about 20 µm in size with 90% of the population <59 µm. Drug content was about 35% (w/w). DOX released rapidly from the MPs, 90% within 2 days. An expected faster release was observed for free DOX from the thermogels with 80–90% of drug released after 3.5–4 h even in the presence of 1% HPMC or Methocel. The release was sustained after embedding the MPs into PF127 and PF127-HPMC thermogels. In particular, the PF127-HPMC thermogel showed an almost linear release, reaching 80% after 3 days and 90% up to 6 days. Although a further characterization and formulation assessment is required to optimize MP characteristics, ALG/DOX-loaded hydrogel MPs, when embedded into a PF127-HPMC thermogel, show a potential for achieving a 7-day sustained release formulation for DOX intradermal deliveryI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.