: The ever-increasing technological advancement in the (ultra)high-performance liquid chromatography tandem (high-resolution) mass spectrometry platforms have largely contributed to steeply intensify the interest towards lipidomics research. However, mass spectrometers alone are unable to distinguish between enantiomers. This obstacle is especially evident in the case of glycerolipids analysis due the prochiral nature of glycerol. Until a couple of decades ago, the stereoselective analysis of triacylglycerols (TAGs) was performed on the end products generated either from their enzymatic or chemical hydrolysis, namely on mono- or diacyl-sn-glycerols (MAGs and DAGs, respectively). These were then mostly analyzed with Pirkle-type chiral stationary phases (CSPs) after dedicated multi-step derivatization procedures. One of the most significant drawbacks of these traditional methods for enantioselective TAGs analysis (actually of the produced MAGs and DAGs, often investigated as target species per se) was the difficulty to totally abolish the migration of fatty acyls between glycerol positions. This made difficult to control and keep unaltered the stereochemistry of the original molecules. Over the last two decades, it has been widely demonstrated that the enantioselective analysis of intact TAGs as well as of non-derivatized MAGs and DAGs can be efficiently obtained using polysaccharide-based CSPs incorporating either amylose- or cellulose-phenylcarbamate derivatives chiral selectors. In this paper, the enantioselective methods developed with these CSPs for the enantioselective direct LC analysis of MAGs, DAGs and TAGs embedding different types of fatty acid residues are comprehensively reviewed.
Chiral high-performance liquid chromatography analysis of mono-, di-, and triacylglycerols with amylose- and cellulose-phenylcarbamate-based stationary phases
Ianni, Federica;Carotti, Andrea;Favilli, Alessandro;Gerli, Sandro;Sardella, Roccaldo
2023
Abstract
: The ever-increasing technological advancement in the (ultra)high-performance liquid chromatography tandem (high-resolution) mass spectrometry platforms have largely contributed to steeply intensify the interest towards lipidomics research. However, mass spectrometers alone are unable to distinguish between enantiomers. This obstacle is especially evident in the case of glycerolipids analysis due the prochiral nature of glycerol. Until a couple of decades ago, the stereoselective analysis of triacylglycerols (TAGs) was performed on the end products generated either from their enzymatic or chemical hydrolysis, namely on mono- or diacyl-sn-glycerols (MAGs and DAGs, respectively). These were then mostly analyzed with Pirkle-type chiral stationary phases (CSPs) after dedicated multi-step derivatization procedures. One of the most significant drawbacks of these traditional methods for enantioselective TAGs analysis (actually of the produced MAGs and DAGs, often investigated as target species per se) was the difficulty to totally abolish the migration of fatty acyls between glycerol positions. This made difficult to control and keep unaltered the stereochemistry of the original molecules. Over the last two decades, it has been widely demonstrated that the enantioselective analysis of intact TAGs as well as of non-derivatized MAGs and DAGs can be efficiently obtained using polysaccharide-based CSPs incorporating either amylose- or cellulose-phenylcarbamate derivatives chiral selectors. In this paper, the enantioselective methods developed with these CSPs for the enantioselective direct LC analysis of MAGs, DAGs and TAGs embedding different types of fatty acid residues are comprehensively reviewed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.