In this paper we present a novel strategy to easily prepare biodegradable chitosan derived films as new packaging systems. Combination of chitosan, adipic acid and 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride (DMTMM) allowed to obtain high-performing cross-linked films. Biobased glycerol was employed as plasticizer. An in-depth study was performed on ten different samples in order to evaluate the role of DMTMM as cross-linking agent. Experimental data showed that 15 wt% of DMTMM enhanced moisture content and moisture uptake (10.42% and 11.11%), water vapor permeability (0.13 10−7 g m−1 h−1 Pa−1) and good UV barrier properties. Additionally, 30 wt% of DMTMM significantly increased the tensile strength of films up to 83 MPa and elongation at break values reached 39.7%. Thermogravimetric, IR, XRD and SEM analysis confirmed that physical-mechanical properties of the obtained films were considerably improved, due to cross-linking by DMTMM, demonstrating promising properties for packaging applications.

Boosting physical-mechanical properties of adipic acid/chitosan films by DMTMM cross-linking

Di Michele A.;
2022

Abstract

In this paper we present a novel strategy to easily prepare biodegradable chitosan derived films as new packaging systems. Combination of chitosan, adipic acid and 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride (DMTMM) allowed to obtain high-performing cross-linked films. Biobased glycerol was employed as plasticizer. An in-depth study was performed on ten different samples in order to evaluate the role of DMTMM as cross-linking agent. Experimental data showed that 15 wt% of DMTMM enhanced moisture content and moisture uptake (10.42% and 11.11%), water vapor permeability (0.13 10−7 g m−1 h−1 Pa−1) and good UV barrier properties. Additionally, 30 wt% of DMTMM significantly increased the tensile strength of films up to 83 MPa and elongation at break values reached 39.7%. Thermogravimetric, IR, XRD and SEM analysis confirmed that physical-mechanical properties of the obtained films were considerably improved, due to cross-linking by DMTMM, demonstrating promising properties for packaging applications.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1567636
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 18
social impact