Oleogels containing silica–silver-based nanomaterials were prepared to be used as potential antimicrobial treatment for preventing and curing skin infections. Fumed silica was used as a bifunctional excipient able to offer support to silver-based nanoparticle growth and act as a gelling agent for oleogel formulation. First, silica–silver composites were prepared following a sustainable method by contact of fumed silica and silver nitrate in the presence of ethanol and successive UV irradiation. The composites were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), ATR FT-IR spectroscopy and UV-Vis spectrophotometry. The presence of 8–20 nm spherical nanoparticles, in addition to the silica aggregates and AgNO3 crystals, was detected. The composites showed good antimicrobial activity against the Gram-negative Pseudomonas aeruginosa and the Gram-positive bacteria Staphylococcus aureus and Staphylococcus epidermidis. Thus, they were formulated in an oleogel, obtained using fumed silica as a gelling agent. For comparison, oleogels containing AgNO3 were prepared according to two different formulative techniques. The silica–silver-based oleogels showed good antimicrobial activity and did not show cytotoxic effects for fibroblasts and keratinocytes.

Antimicrobial Oleogel Containing Sustainably Prepared Silver-Based Nanomaterials for Topical Application

Ambrogi, Valeria
;
Nocchetti, Morena;Pietrella, Donatella;Quaglia, Giulia;Di Michele, Alessandro;Latterini, Loredana
2023

Abstract

Oleogels containing silica–silver-based nanomaterials were prepared to be used as potential antimicrobial treatment for preventing and curing skin infections. Fumed silica was used as a bifunctional excipient able to offer support to silver-based nanoparticle growth and act as a gelling agent for oleogel formulation. First, silica–silver composites were prepared following a sustainable method by contact of fumed silica and silver nitrate in the presence of ethanol and successive UV irradiation. The composites were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), ATR FT-IR spectroscopy and UV-Vis spectrophotometry. The presence of 8–20 nm spherical nanoparticles, in addition to the silica aggregates and AgNO3 crystals, was detected. The composites showed good antimicrobial activity against the Gram-negative Pseudomonas aeruginosa and the Gram-positive bacteria Staphylococcus aureus and Staphylococcus epidermidis. Thus, they were formulated in an oleogel, obtained using fumed silica as a gelling agent. For comparison, oleogels containing AgNO3 were prepared according to two different formulative techniques. The silica–silver-based oleogels showed good antimicrobial activity and did not show cytotoxic effects for fibroblasts and keratinocytes.
2023
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1567738
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact