: The progress in human disease treatment can be greatly advanced through the implementation of nanomedicine. This approach involves targeted and cell-specific therapy, controlled drug release, personalized dosage forms, wearable drug delivery, and companion diagnostics. By integrating cutting-edge technologies with drug delivery systems, greater precision can be achieved at the tissue and cellular levels through the use of stimuli-responsive nanoparticles, and the development of electrochemical sensor systems. This precision targeting - by virtue of nanotechnology - allows for therapy to be directed specifically to affected tissues while greatly reducing side effects on healthy tissues. As such, nanomedicine has the potential to transform the treatment of conditions such as cancer, genetic diseases, and chronic illnesses by facilitating precise and cell-specific drug delivery. Additionally, personalized dosage forms and wearable devices offer the ability to tailor treatment to the unique needs of each patient, thereby increasing therapeutic effectiveness and compliance. Companion diagnostics further enable efficient monitoring of treatment response, enabling customized adjustments to the treatment plan. The question of whether all the potential therapeutic approaches outlined here are viable alternatives to current treatments is also discussed. In general, the application of nanotechnology in the field of biomedicine may provide a strong alternative to existing treatments for several reasons. In this review, we aim to present evidence that, although in early stages, fully merging advanced technology with innovative drug delivery shows promise for successful implementation across various disease areas, including cancer and genetic or chronic diseases.

Biologics, Theranostics, and Personalized Medicine in Drug Delivery Systems

Puccetti, Matteo
;
Pariano, Marilena;Schoubben, Aurelie;Giovagnoli, Stefano;Ricci, Maurizio
2024

Abstract

: The progress in human disease treatment can be greatly advanced through the implementation of nanomedicine. This approach involves targeted and cell-specific therapy, controlled drug release, personalized dosage forms, wearable drug delivery, and companion diagnostics. By integrating cutting-edge technologies with drug delivery systems, greater precision can be achieved at the tissue and cellular levels through the use of stimuli-responsive nanoparticles, and the development of electrochemical sensor systems. This precision targeting - by virtue of nanotechnology - allows for therapy to be directed specifically to affected tissues while greatly reducing side effects on healthy tissues. As such, nanomedicine has the potential to transform the treatment of conditions such as cancer, genetic diseases, and chronic illnesses by facilitating precise and cell-specific drug delivery. Additionally, personalized dosage forms and wearable devices offer the ability to tailor treatment to the unique needs of each patient, thereby increasing therapeutic effectiveness and compliance. Companion diagnostics further enable efficient monitoring of treatment response, enabling customized adjustments to the treatment plan. The question of whether all the potential therapeutic approaches outlined here are viable alternatives to current treatments is also discussed. In general, the application of nanotechnology in the field of biomedicine may provide a strong alternative to existing treatments for several reasons. In this review, we aim to present evidence that, although in early stages, fully merging advanced technology with innovative drug delivery shows promise for successful implementation across various disease areas, including cancer and genetic or chronic diseases.
2024
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1567913
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact