: We present a set of results obtained with an innovative eye-tracker based on magnetic dipole localization by means of an array of magnetoresistive sensors. The system tracks both head and eye movements with a high rate (100-200 Sa/s) and in real time. A simple setup is arranged to simulate head and eye motions and to test the tracker performance under realistic conditions. Multimedia material is provided to substantiate and exemplify the results. A comparison with other available technologies for eye-tracking is drawn, discussing advantages (e.g., precision) and disadvantages (e.g., invasivity) of the diverse approaches, with the presented method standing out for low cost, robustness, and relatively low invasivity.

An innovative eye-tracker: Main features and demonstrative tests

Carucci, Mario;Chessa, Piero;
2022

Abstract

: We present a set of results obtained with an innovative eye-tracker based on magnetic dipole localization by means of an array of magnetoresistive sensors. The system tracks both head and eye movements with a high rate (100-200 Sa/s) and in real time. A simple setup is arranged to simulate head and eye motions and to test the tracker performance under realistic conditions. Multimedia material is provided to substantiate and exemplify the results. A comparison with other available technologies for eye-tracking is drawn, discussing advantages (e.g., precision) and disadvantages (e.g., invasivity) of the diverse approaches, with the presented method standing out for low cost, robustness, and relatively low invasivity.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1568795
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact