The IoT (Internet of Things) connect systems, applications, data storage, and services that may be a new gateway for cyber-attacks as they continuously offer services in the organization. Currently, software piracy and malware attacks are high risks to compromise the security of IoT. These threats may steal important information that causes economic and reputational damages. In this paper, we have proposed a combined deep learning approach to detect the pirated software and malware-infected files across the IoT network. The TensorFlow deep neural network is proposed to identify pirated software using source code plagiarism. The tokenization and weighting feature methods are used to filter the noisy data and further, to zoom the importance of each token in terms of source code plagiarism. Then, the deep learning approach is used to detect source code plagiarism. The dataset is collected from Google Code Jam (GCJ) to investigate software piracy. Apart from this, the deep convolutional neural network is used to detect malicious infections in IoT network through color image visualization. The malware samples are obtained from Maling dataset for experimentation. The experimental results indicate that the classification performance of the proposed solution to measure the cybersecurity threats in IoT are better than the state of the art methods.

Cyber Security Threats Detection in Internet of Things Using Deep Learning Approach

Leonardo Mostarda
2019

Abstract

The IoT (Internet of Things) connect systems, applications, data storage, and services that may be a new gateway for cyber-attacks as they continuously offer services in the organization. Currently, software piracy and malware attacks are high risks to compromise the security of IoT. These threats may steal important information that causes economic and reputational damages. In this paper, we have proposed a combined deep learning approach to detect the pirated software and malware-infected files across the IoT network. The TensorFlow deep neural network is proposed to identify pirated software using source code plagiarism. The tokenization and weighting feature methods are used to filter the noisy data and further, to zoom the importance of each token in terms of source code plagiarism. Then, the deep learning approach is used to detect source code plagiarism. The dataset is collected from Google Code Jam (GCJ) to investigate software piracy. Apart from this, the deep convolutional neural network is used to detect malicious infections in IoT network through color image visualization. The malware samples are obtained from Maling dataset for experimentation. The experimental results indicate that the classification performance of the proposed solution to measure the cybersecurity threats in IoT are better than the state of the art methods.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1569087
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 178
  • ???jsp.display-item.citation.isi??? 109
social impact