Cadmium sulfide (CdS)-based yellow pigments have been used in a number of early 20th century artworks, including The Scream series painted by Edvard Munch. Some of these unique paintings are threatened by the discoloration of these CdS-based yellow oil paints because of the oxidation of the original sulfides to sulfates. The experimental data obtained here prove that moisture and cadmium chloride compounds play a key role in promoting such oxidation. To clarify how these two factors effectively prompt the process, we studied the band alignment between CdS, CdCl2, and Cd-(OH)Cl as well as the radicals center dot OH and H3O center dot by density functional theory (DFT) methods. Our results show that a stack of several layers of Cd-(OH)Cl creates a pocket of positive holes at the Cl-terminated surface and a pocket of electrons at the OH-terminated surface by leading in a difference in ionization energy at both surfaces. The resulting band alignment indicates that Cd-(OH)Cl can indeed play the role of an oxidative catalyst for CdS in a moist environment, thus providing an explanation for the experimental evidence.
A Combined Experimental and Computational Approach to Understanding CdS Pigment Oxidation in a Renowned Early 20th Century Painting
Romani, Aldo;
2023
Abstract
Cadmium sulfide (CdS)-based yellow pigments have been used in a number of early 20th century artworks, including The Scream series painted by Edvard Munch. Some of these unique paintings are threatened by the discoloration of these CdS-based yellow oil paints because of the oxidation of the original sulfides to sulfates. The experimental data obtained here prove that moisture and cadmium chloride compounds play a key role in promoting such oxidation. To clarify how these two factors effectively prompt the process, we studied the band alignment between CdS, CdCl2, and Cd-(OH)Cl as well as the radicals center dot OH and H3O center dot by density functional theory (DFT) methods. Our results show that a stack of several layers of Cd-(OH)Cl creates a pocket of positive holes at the Cl-terminated surface and a pocket of electrons at the OH-terminated surface by leading in a difference in ionization energy at both surfaces. The resulting band alignment indicates that Cd-(OH)Cl can indeed play the role of an oxidative catalyst for CdS in a moist environment, thus providing an explanation for the experimental evidence.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.