We prove some convergence theorems for the Kurzweil-Henstock integral in Riesz spaces, for functions defined in an abstract compact topological space with respect to Riesz space-valued measures, which can be unbounded. In particular, some versions of monotone and Lebesgue dominated convergence theorems and Saks-Henstock Lemma are proved.

The Kurzweil-Henstock Integral for Riesz Space-Valued Maps Defined in Abstract Topological Spaces and Convergence Theorems

BOCCUTO, Antonio;
2006

Abstract

We prove some convergence theorems for the Kurzweil-Henstock integral in Riesz spaces, for functions defined in an abstract compact topological space with respect to Riesz space-valued measures, which can be unbounded. In particular, some versions of monotone and Lebesgue dominated convergence theorems and Saks-Henstock Lemma are proved.
2006
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/156982
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact