We study the problem of representing a graph as a storyplan, a recently introduced model for dynamic graph visualization. It is based on a sequence of frames, each showing a subset of vertices and a planar drawing of their induced subgraphs, where vertices appear and disappear over time. Namely, in the StoryPlan problem, we are given a graph and we want to decide whether there exists a total vertex appearance order for which a storyplan exists. We prove that the problem is NP-complete, and complement this hardness with two parameterized algorithms, one in the vertex cover number and one in the feedback edge set number of the input graph. We prove that partial 3-trees always admit a storyplan, which can be computed in linear time. Finally, we show that the problem remains NPcomplete if the vertex appearance order is given and we have to choose how to draw the frames. (c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

On the complexity of the storyplan problem

Binucci, Carla;Di Giacomo, Emilio;Liotta, Giuseppe;Montecchiani, Fabrizio;
2024

Abstract

We study the problem of representing a graph as a storyplan, a recently introduced model for dynamic graph visualization. It is based on a sequence of frames, each showing a subset of vertices and a planar drawing of their induced subgraphs, where vertices appear and disappear over time. Namely, in the StoryPlan problem, we are given a graph and we want to decide whether there exists a total vertex appearance order for which a storyplan exists. We prove that the problem is NP-complete, and complement this hardness with two parameterized algorithms, one in the vertex cover number and one in the feedback edge set number of the input graph. We prove that partial 3-trees always admit a storyplan, which can be computed in linear time. Finally, we show that the problem remains NPcomplete if the vertex appearance order is given and we have to choose how to draw the frames. (c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
2024
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1570193
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact