C4 plants have a biochemical carbon concentrating mechanism (CCM) that increases CO2 concentration around ribulose bisphosphate carboxylase oxygenase (Rubisco) in the bundle sheath (BS). Under limiting light, the activity of the CCM generally decreases, causing an increase in leakiness, (Φ), the ratio of CO2 retrodiffusing from the BS relative to C4 carboxylation processes. Maize plants were grown under high and low light regimes (respectively HL, 600 versus LL, 100μEm-2s-1). Short-term acclimation of Φ was compared from isotopic discrimination (Δ), gas exchange and photochemistry. Direct measurement of respiration in the light, and ATP production rate (JATP), allowed us use a novel approach to derive Φ, compared with the conventional fitting of measured and predicted Δ. HL grown plants responded to decreasing light intensities with the well-documented increase in Φ. Conversely, LL plants showed a constant Φ, which has not been observed previously. We explain the pattern by two contrasting acclimation strategies: HL plants maintained a high CCM activity at LL, resulting in high CO2 overcycling and increased Φ; LL plants acclimated by down-regulating the CCM, effectively optimizing scarce ATP supply. This surprising plasticity may limit the impact of Φ-dependent carbon losses in leaves becoming shaded within developing canopies. © 2013 John Wiley & Sons Ltd.

Acclimation to low light by C4 maize: Implications for bundle sheath leakiness

Bellasio C.
;
2014

Abstract

C4 plants have a biochemical carbon concentrating mechanism (CCM) that increases CO2 concentration around ribulose bisphosphate carboxylase oxygenase (Rubisco) in the bundle sheath (BS). Under limiting light, the activity of the CCM generally decreases, causing an increase in leakiness, (Φ), the ratio of CO2 retrodiffusing from the BS relative to C4 carboxylation processes. Maize plants were grown under high and low light regimes (respectively HL, 600 versus LL, 100μEm-2s-1). Short-term acclimation of Φ was compared from isotopic discrimination (Δ), gas exchange and photochemistry. Direct measurement of respiration in the light, and ATP production rate (JATP), allowed us use a novel approach to derive Φ, compared with the conventional fitting of measured and predicted Δ. HL grown plants responded to decreasing light intensities with the well-documented increase in Φ. Conversely, LL plants showed a constant Φ, which has not been observed previously. We explain the pattern by two contrasting acclimation strategies: HL plants maintained a high CCM activity at LL, resulting in high CO2 overcycling and increased Φ; LL plants acclimated by down-regulating the CCM, effectively optimizing scarce ATP supply. This surprising plasticity may limit the impact of Φ-dependent carbon losses in leaves becoming shaded within developing canopies. © 2013 John Wiley & Sons Ltd.
2014
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1571182
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 67
  • ???jsp.display-item.citation.isi??? 67
social impact