In recent years, polymeric materials have gained prominence as a competitive option for gear manufacturing. Nevertheless, the absence of comprehensive literature addressing the wear due to the coupling of these materials presents a real challenge in response to this innovative trend. Wear of plastic gearwheels represents, in fact, a key issue, traditionally assessed using standard formulations under optimal dry operating conditions. These calculations often rely on coefficients derived from specialized gear tests, but their applicability is constrained to specific polymer-metal combinations. This research was dedicated to the development of a test bench tailored to evaluate the wear of glass fiber-reinforced self-lubricating polymer gearwheels under different operating conditions. This study commenced with a comprehensive exploration of wear phenomena in thermoplastic gearwheels and the inherent challenges associated with utilizing existing standards and the scientific literature for wear analysis. This was followed by a careful evaluation of the operational needs of the test bench, which, starting from a basic solution already implemented, improved its use in various aspects. Finally, this study introduced an optical-based methodology for average linear wear control. This research strived to establish a testing approach that minimizes uncertainties when assessing the wear of thermoplastic gears.

Studying the Performance of Reinforced Polymer Gear Wheels: Development of an Advanced Test Bench for Wear Analysis

Landi, Luca
;
Morettini, Giulia;Palmieri, Massimiliano;Cianetti, Filippo;Braccesi, Claudio
2024

Abstract

In recent years, polymeric materials have gained prominence as a competitive option for gear manufacturing. Nevertheless, the absence of comprehensive literature addressing the wear due to the coupling of these materials presents a real challenge in response to this innovative trend. Wear of plastic gearwheels represents, in fact, a key issue, traditionally assessed using standard formulations under optimal dry operating conditions. These calculations often rely on coefficients derived from specialized gear tests, but their applicability is constrained to specific polymer-metal combinations. This research was dedicated to the development of a test bench tailored to evaluate the wear of glass fiber-reinforced self-lubricating polymer gearwheels under different operating conditions. This study commenced with a comprehensive exploration of wear phenomena in thermoplastic gearwheels and the inherent challenges associated with utilizing existing standards and the scientific literature for wear analysis. This was followed by a careful evaluation of the operational needs of the test bench, which, starting from a basic solution already implemented, improved its use in various aspects. Finally, this study introduced an optical-based methodology for average linear wear control. This research strived to establish a testing approach that minimizes uncertainties when assessing the wear of thermoplastic gears.
2024
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1572194
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact