In modern cloud computing, the need for flexible and scalable orchestration of services, combined with robust security measures, is paramount. In this paper, we propose an innovative approach for managing secure cloud bursting in Kubernetes, combining Attribute-Based Encryption (ABE) with Kubernetes labeling. Our model addresses the challenges of complexity, cost, and data protection compliance by leveraging both Kubernetes and ABE. We introduce an attribute-based bursting component that uses Kubernetes labels for orchestration, and an encryption component that employs ABE for data protection. This unified management model ensures data confidentiality while enabling efficient cloud bursting. Our approach combines the strengths of label-based orchestration with fine-grained encryption, providing a technologically advanced yet user-friendly solution for secure cloud bursting. We present a proof-of-concept implementation that demonstrates the feasibility and effectiveness of our model. Our approach offers a unified solution that complies with security and privacy laws while meeting the needs of contemporary cloud-based systems.
Attribute-Based Management of Secure Kubernetes Cloud Bursting
Femminella M.
Validation
;Palmucci M.Investigation
;Reali G.Writing – Original Draft Preparation
;
2024
Abstract
In modern cloud computing, the need for flexible and scalable orchestration of services, combined with robust security measures, is paramount. In this paper, we propose an innovative approach for managing secure cloud bursting in Kubernetes, combining Attribute-Based Encryption (ABE) with Kubernetes labeling. Our model addresses the challenges of complexity, cost, and data protection compliance by leveraging both Kubernetes and ABE. We introduce an attribute-based bursting component that uses Kubernetes labels for orchestration, and an encryption component that employs ABE for data protection. This unified management model ensures data confidentiality while enabling efficient cloud bursting. Our approach combines the strengths of label-based orchestration with fine-grained encryption, providing a technologically advanced yet user-friendly solution for secure cloud bursting. We present a proof-of-concept implementation that demonstrates the feasibility and effectiveness of our model. Our approach offers a unified solution that complies with security and privacy laws while meeting the needs of contemporary cloud-based systems.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.