The BEST (Beerkan Estimation of Soil Transfer parameters) method was used to compare the hydraulic properties of the soils in two Long-term Agroecosystem Experiments (LTAEs) located at the FIELDLAB experimental site of the University of Perugia (central Italy). The LTAE “NewSmoca” consists of a biennial maize-durum wheat crop rotation under integrated low-input cropping systems with (i) inversion soil tillage (INT) or (ii) no-tillage (INT+) and (iii) under an organic cropping system with inversion soil tillage (ORG). ORG and INT+ involve the use of autumn-sown cover crops (before the maize cycle). Pure stand durum wheat was grown in INT and INT+, while a faba bean–wheat temporary intercropping was implemented in ORG. The LTAE “Crop Rotation” consists of different crop rotations and residue management, a continuous soft winter wheat and biennial rotations of soft winter wheat with maize or faba bean. Each rotation is combined with two modes of crop residue management: removal or burial. For INT+, despite the high-bulk density (>1.50 g/cm3), we found that conductivity, sorptivity and available water are comparable to those of INT, probably due to a more structured and efficient micropore system. ORG soils show the highest conductivity, sorptivity and available water content values, probably due to the recent spring tillage occurring in the wheat inter-row with the faba bean incorporation into the soil. For LTAE Rotation, the residue burial seems to influence the capacity-based indicators positively. However, the differences in the removal treatment are minor, and this could be due to the inversion soil tillage, which limits the progressive accumulation of organic matter.

Using Beerkan Procedure to Estimate Hydraulic Soil Properties under Long Term Agroecosystems Experiments

Vergni L.;Tosi G.
;
Bertuzzi J.;Farneselli M.;Tosti G.;Tei F.;Agnelli A.;Todisco F.
2024

Abstract

The BEST (Beerkan Estimation of Soil Transfer parameters) method was used to compare the hydraulic properties of the soils in two Long-term Agroecosystem Experiments (LTAEs) located at the FIELDLAB experimental site of the University of Perugia (central Italy). The LTAE “NewSmoca” consists of a biennial maize-durum wheat crop rotation under integrated low-input cropping systems with (i) inversion soil tillage (INT) or (ii) no-tillage (INT+) and (iii) under an organic cropping system with inversion soil tillage (ORG). ORG and INT+ involve the use of autumn-sown cover crops (before the maize cycle). Pure stand durum wheat was grown in INT and INT+, while a faba bean–wheat temporary intercropping was implemented in ORG. The LTAE “Crop Rotation” consists of different crop rotations and residue management, a continuous soft winter wheat and biennial rotations of soft winter wheat with maize or faba bean. Each rotation is combined with two modes of crop residue management: removal or burial. For INT+, despite the high-bulk density (>1.50 g/cm3), we found that conductivity, sorptivity and available water are comparable to those of INT, probably due to a more structured and efficient micropore system. ORG soils show the highest conductivity, sorptivity and available water content values, probably due to the recent spring tillage occurring in the wheat inter-row with the faba bean incorporation into the soil. For LTAE Rotation, the residue burial seems to influence the capacity-based indicators positively. However, the differences in the removal treatment are minor, and this could be due to the inversion soil tillage, which limits the progressive accumulation of organic matter.
2024
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1574074
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact