TM7SF2 gene encodes 3β-hydroxysterol Δ14-reductase, responsible for the reduction of C14-unsaturated sterols in cholesterol biosynthesis. TM7SF2 gene expression is controlled by cell sterol levels through the SREBP-2. The motifs of TM7SF2 promoter responsible for activation by SREBP-2 have not been characterized. Using electrophoretic mobility shift assays and mutation analysis, we identified a new SRE motif, 60% identical to an inverted SRE-3, able to bind SREBP-2 in vitro and in vivo. Co-transfection of promoter– luciferase reporter constructs in HepG2 cells showed that the binding of SREBP-2 to SRE produced approximately 26-fold promoter activation, whereas mutation of the SRE motif caused a dramatic decrease of transactivation by SREBP-2. The function of additional motifs that bind transcription factors cooperating with SREBP-2 was investigated. An inverted CCAAT-box, that binds nuclear factor Y (NF-Y), cooperates with SREBP-2 in TM7SF2 promoter activation. Deletion of this motif resulted in the loss of promoter induction by sterol starvation in HepG2 cells, as well as a decrease in fold activation by SREBP-2 in cotransfection experiments. Moreover, co-transfection of the promoter with a plasmid expressing dominant negative NF-YA did not permit full activation by SREBP-2. Three GC-boxes (1, 2, 3), known to bind Sp1 transcription factor, were also investigated. The mutagenesis of each of them produced a decrease in SREBP- 2-dependent activation, the most powerful being GC-box2. A triple mutagenized promoter construct did not have an additive effect. We conclude that, besides the SRE motif, both the inverted CCAAT-box and GC-box2 are essential for full promoter activation by SREBP-2.

Activation of TM7SF2 promoter by SREBP-2 depends on a new sterol regulatory element, a GC box and an inverted CCAAT box

SCHIAVONI, GIANLUCA;BENNATI, Anna Maria;CASTELLI, Marilena;DELLA FAZIA, Maria Agnese;BECCARI, Tommaso;SERVILLO, Giuseppe;ROBERTI, Rita
2010

Abstract

TM7SF2 gene encodes 3β-hydroxysterol Δ14-reductase, responsible for the reduction of C14-unsaturated sterols in cholesterol biosynthesis. TM7SF2 gene expression is controlled by cell sterol levels through the SREBP-2. The motifs of TM7SF2 promoter responsible for activation by SREBP-2 have not been characterized. Using electrophoretic mobility shift assays and mutation analysis, we identified a new SRE motif, 60% identical to an inverted SRE-3, able to bind SREBP-2 in vitro and in vivo. Co-transfection of promoter– luciferase reporter constructs in HepG2 cells showed that the binding of SREBP-2 to SRE produced approximately 26-fold promoter activation, whereas mutation of the SRE motif caused a dramatic decrease of transactivation by SREBP-2. The function of additional motifs that bind transcription factors cooperating with SREBP-2 was investigated. An inverted CCAAT-box, that binds nuclear factor Y (NF-Y), cooperates with SREBP-2 in TM7SF2 promoter activation. Deletion of this motif resulted in the loss of promoter induction by sterol starvation in HepG2 cells, as well as a decrease in fold activation by SREBP-2 in cotransfection experiments. Moreover, co-transfection of the promoter with a plasmid expressing dominant negative NF-YA did not permit full activation by SREBP-2. Three GC-boxes (1, 2, 3), known to bind Sp1 transcription factor, were also investigated. The mutagenesis of each of them produced a decrease in SREBP- 2-dependent activation, the most powerful being GC-box2. A triple mutagenized promoter construct did not have an additive effect. We conclude that, besides the SRE motif, both the inverted CCAAT-box and GC-box2 are essential for full promoter activation by SREBP-2.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/157493
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 21
social impact