The quantum (QM) scattering theory has been difficult to apply to the family of insertion reactions and the approximate quasiclassical trajectory (QCT) method or statistical calculations were mostly applied. In this Letter, we compare the experimental differential cross sections for the title insertion reaction with the results of QM and QCT calculations on an ab initio potential energy surface. The QM results reproduce well the crossed beam experiment, while a small, but significant, difference in the QCT ones points to quantum effects, possibly the occurrence of tunneling through the combined potential and centrifugal barrier

Quantum effects in the differential cross sections for the insertion reaction N(2D)+H2

BALUCANI, Nadia;CARTECHINI, Laura;CAPOZZA, Giovanni;SEGOLONI, ENRICO;CASAVECCHIA, Piergiorgio;VOLPI, GIAN GUALBERTO;
2002

Abstract

The quantum (QM) scattering theory has been difficult to apply to the family of insertion reactions and the approximate quasiclassical trajectory (QCT) method or statistical calculations were mostly applied. In this Letter, we compare the experimental differential cross sections for the title insertion reaction with the results of QM and QCT calculations on an ab initio potential energy surface. The QM results reproduce well the crossed beam experiment, while a small, but significant, difference in the QCT ones points to quantum effects, possibly the occurrence of tunneling through the combined potential and centrifugal barrier
2002
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/157535
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 89
  • ???jsp.display-item.citation.isi??? 102
social impact