We consider the Cauchy problem u_tt-Delta u +|u_t|^{m-1}u_t=|u|^{p-1}u, in (0,infty) x R^n, u(0,x)=u_0(x), u_t(0,x)=v_0(x) for 1<= m<p, p<n/(n-2) for n\ge 3. We prove that for any given numbers alpha0, lambda>=0 there exist infinitely many data u_0, v_0 in the energy space such that the initial energy E(0)=\lambda, the gradient norm |\nabla u_0\|_2=\alpha, and the solution of the above Cauchy problem blows up in finite time.

Blow-up for nonlinear dissipative wave equations in R^n

VITILLARO, Enzo
2005

Abstract

We consider the Cauchy problem u_tt-Delta u +|u_t|^{m-1}u_t=|u|^{p-1}u, in (0,infty) x R^n, u(0,x)=u_0(x), u_t(0,x)=v_0(x) for 1<= m=0 there exist infinitely many data u_0, v_0 in the energy space such that the initial energy E(0)=\lambda, the gradient norm |\nabla u_0\|_2=\alpha, and the solution of the above Cauchy problem blows up in finite time.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/157873
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 62
  • ???jsp.display-item.citation.isi??? 58
social impact