A three-step computational model for the optimal weekly interseasonal operation of a multipurpose (irrigation, environmental, domestic/industrial) reservoir is developed. Environmental and domestic/industrial uses are evaluated and considered as priority uses that induce deficit irrigation conditions. The spatiotemporal variability of the irrigation water demand at the basin level is accounted for. The objective is the maximization of the interseasonal agricultural profitability at the basin level. The optimal allocation process solves the competition for water on different temporal scales (weekly, seasonal, and interseasonal) and on different spatial scales (in basins among irrigation areas and in irrigation areas among crops). The three steps are simulation model operating at the soil-crop unit level, optimization model operating at the multicrop area level, and optimization model operating at the basin level. This consists of parametric dynamic programming for which an analytical objective function was defined and an analytical solution was determined. This solution replaces the iterative procedure, so that it is possible to account for all the variables without running into the “curse of dimensionality” problem. The environmental use allocation is expressed as a function of a parameter, the variations of which give different environmental protection levels. The validation case study emphasizes the importance of considering the spatiotemporal variability of the demand. This is consistent with the “computationally tractable” model algorithm.

Optimal Reservoir Operations for Irrigation Using a Three Spatial Scales Approach

MANNOCCHI, Francesco;TODISCO, Francesca
2006

Abstract

A three-step computational model for the optimal weekly interseasonal operation of a multipurpose (irrigation, environmental, domestic/industrial) reservoir is developed. Environmental and domestic/industrial uses are evaluated and considered as priority uses that induce deficit irrigation conditions. The spatiotemporal variability of the irrigation water demand at the basin level is accounted for. The objective is the maximization of the interseasonal agricultural profitability at the basin level. The optimal allocation process solves the competition for water on different temporal scales (weekly, seasonal, and interseasonal) and on different spatial scales (in basins among irrigation areas and in irrigation areas among crops). The three steps are simulation model operating at the soil-crop unit level, optimization model operating at the multicrop area level, and optimization model operating at the basin level. This consists of parametric dynamic programming for which an analytical objective function was defined and an analytical solution was determined. This solution replaces the iterative procedure, so that it is possible to account for all the variables without running into the “curse of dimensionality” problem. The environmental use allocation is expressed as a function of a parameter, the variations of which give different environmental protection levels. The validation case study emphasizes the importance of considering the spatiotemporal variability of the demand. This is consistent with the “computationally tractable” model algorithm.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/158186
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact