This paper focuses on the preparation and characterization of antibacterial alginate microparticles containing silver@hydroxyapatite functionalized calcium carbonate composites for tissue engineering. Microparticles were prepared by cross-linking a silver@composite sodium alginate dispersion with CaCl2. This method showed a very good silver efficiency loading and the presence of silver chloride nanoparticles was detected. Silver free microparticles, containing hydroxyapatite functionalized calcium carbonates and neat alginate microparticles were prepared as well. All microparticles were characterized for water absorption and for in vitro bioactivity by immersion in simulated body fluid (SBF). Finally, antimicrobial and antibiofilm activities as well as cytotoxicity were evaluated. Microparticles containing silver@composites exhibited good antimicrobial and antibiofilm activities against Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa and Candida albicans, but exerted a certain cytotoxicity against the tested cell models (fibroblasts and osteoblasts). Microparticles containing hydroxyapatite functionalized calcium carbonates were found to be always less cytotoxic, also in comparison to neat alginate microparticles, proving that the presence of the inorganic matrices exerts a protective effect on microparticle cytotoxicity.
Alginate microparticles containing silver@hydroxyapatite functionalized calcium carbonate composites
Nocchetti M.;Pietrella D.;Antognelli C.;Di Michele A.;Russo C.;Ambrogi V.
2024
Abstract
This paper focuses on the preparation and characterization of antibacterial alginate microparticles containing silver@hydroxyapatite functionalized calcium carbonate composites for tissue engineering. Microparticles were prepared by cross-linking a silver@composite sodium alginate dispersion with CaCl2. This method showed a very good silver efficiency loading and the presence of silver chloride nanoparticles was detected. Silver free microparticles, containing hydroxyapatite functionalized calcium carbonates and neat alginate microparticles were prepared as well. All microparticles were characterized for water absorption and for in vitro bioactivity by immersion in simulated body fluid (SBF). Finally, antimicrobial and antibiofilm activities as well as cytotoxicity were evaluated. Microparticles containing silver@composites exhibited good antimicrobial and antibiofilm activities against Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa and Candida albicans, but exerted a certain cytotoxicity against the tested cell models (fibroblasts and osteoblasts). Microparticles containing hydroxyapatite functionalized calcium carbonates were found to be always less cytotoxic, also in comparison to neat alginate microparticles, proving that the presence of the inorganic matrices exerts a protective effect on microparticle cytotoxicity.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.