Density functional calculations for both periodic slabs and different size cluster models of the hydrogen-terminated (100) surface of silicon are used to study a new configuration, formed by a silylene center interacting with vicinal silicon dihydrides through nonconventional hydrogen bonds. A comparison between slab-model and cluster-model approaches to modeling surface silylene defect formation processes is presented. The cluster models are used to analyze the structure and bonding of the silylene with a Lewis acid and base, showing the Zwitterionic nature of the defect. The silylene is also demonstrated to behave as a strong Brønsted acid. The stabilization of the silylene defect via interaction with species unavoidably present in the HF(aq)-etching solution is investigated. Finally, the negative chemical shift observed by X-ray photoelectron spectroscopy in the HF(aq)-etched (100) Si surface is attributed to the occurrence of silylene defect.

Silylene defect at the dihydrogen terminated (100) Si surface

BELANZONI, Paola;GIORGI, Giacomo;SGAMELLOTTI, Antonio;
2009

Abstract

Density functional calculations for both periodic slabs and different size cluster models of the hydrogen-terminated (100) surface of silicon are used to study a new configuration, formed by a silylene center interacting with vicinal silicon dihydrides through nonconventional hydrogen bonds. A comparison between slab-model and cluster-model approaches to modeling surface silylene defect formation processes is presented. The cluster models are used to analyze the structure and bonding of the silylene with a Lewis acid and base, showing the Zwitterionic nature of the defect. The silylene is also demonstrated to behave as a strong Brønsted acid. The stabilization of the silylene defect via interaction with species unavoidably present in the HF(aq)-etching solution is investigated. Finally, the negative chemical shift observed by X-ray photoelectron spectroscopy in the HF(aq)-etched (100) Si surface is attributed to the occurrence of silylene defect.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/158244
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact