In this paper we consider the problem of non-continuation of solutions of dissipative nonlinear Kirchhoff systems, involving the p(x)-Laplacian operator and governed by nonlinear driving forces f = f (t, x, u), as well as nonlinear external damping terms Q = Q(t, x, u, u_t ), both of which could significantly dependent on the time t . The theorems are obtained through the study of the natural energy Eu associated to the solutions u of the systems. Thanks to a new approach of the classical potential well and concavity methods, we show the nonexistence of global solutions, when the initial energy is controlled above by a critical value; that is, when the initial data belong to a specific region in the phase plane. Several consequences, interesting in applications, are given in particular subcases. The results are original also for the scalar standard wave equation when p(x)=2 and even for problems linearly damped.
Global Nonexistence for Nonlinear Kirchhoff Systems
AUTUORI, GIUSEPPINA;PUCCI, Patrizia;SALVATORI, Maria Cesarina
2010
Abstract
In this paper we consider the problem of non-continuation of solutions of dissipative nonlinear Kirchhoff systems, involving the p(x)-Laplacian operator and governed by nonlinear driving forces f = f (t, x, u), as well as nonlinear external damping terms Q = Q(t, x, u, u_t ), both of which could significantly dependent on the time t . The theorems are obtained through the study of the natural energy Eu associated to the solutions u of the systems. Thanks to a new approach of the classical potential well and concavity methods, we show the nonexistence of global solutions, when the initial energy is controlled above by a critical value; that is, when the initial data belong to a specific region in the phase plane. Several consequences, interesting in applications, are given in particular subcases. The results are original also for the scalar standard wave equation when p(x)=2 and even for problems linearly damped.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.