Sustainability and ecotoxicity issues call for innovations regarding eco-friendly adhesives in the production of biocomposite wood materials, and solutions involving nano-scale and bio-based compounds represent a valid and promising target. One possible approach is to increase the performance of adhesives such as polyvinyl acetate (PVAc) or melamine-urea-formaldehyde (MUF) by means of nanoparticles in order to obtain a material with better mechanical and environmental resistance. When applying cellulose-based nanoparticles or tannin, the concept of a circular economy is successfully implemented into the forest/wood value chain, and chances are created to develop new value chains using byproducts of forestry operations. In this study, assortments coming from young sweet chestnut (Castanea sativa Mill.) coppice stands were utilized for the preparation of single lap joint assemblies using different commercial adhesives (PVAc, MUF) and cellulose nanocrystals (CNC) and tannin as additives. The results showed that addition of CNC and tannin to PVAc glue increased tensile shear strength in lap joint tests presenting a promising base for future tests regarding the addition of CNC and tannin in MUF or PVAc adhesive formulations. Unfortunately, the tested bio-based additives did not reveal the same encouraging results when tested in the wet state.

Impact of Bio-Based (Tannins) and Nano-Scale (CNC) Additives on Bonding Properties of Synthetic Adhesives (PVAc and MUF) Using Chestnut Wood from Young Coppice Stands

Zikeli F;
2020

Abstract

Sustainability and ecotoxicity issues call for innovations regarding eco-friendly adhesives in the production of biocomposite wood materials, and solutions involving nano-scale and bio-based compounds represent a valid and promising target. One possible approach is to increase the performance of adhesives such as polyvinyl acetate (PVAc) or melamine-urea-formaldehyde (MUF) by means of nanoparticles in order to obtain a material with better mechanical and environmental resistance. When applying cellulose-based nanoparticles or tannin, the concept of a circular economy is successfully implemented into the forest/wood value chain, and chances are created to develop new value chains using byproducts of forestry operations. In this study, assortments coming from young sweet chestnut (Castanea sativa Mill.) coppice stands were utilized for the preparation of single lap joint assemblies using different commercial adhesives (PVAc, MUF) and cellulose nanocrystals (CNC) and tannin as additives. The results showed that addition of CNC and tannin to PVAc glue increased tensile shear strength in lap joint tests presenting a promising base for future tests regarding the addition of CNC and tannin in MUF or PVAc adhesive formulations. Unfortunately, the tested bio-based additives did not reveal the same encouraging results when tested in the wet state.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1585376
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 13
social impact