We study the asymptotic stability for solutions of the nonlinear damped Kirchhoff system, with homogeneous Dirichlet boundary conditions, under fairly natural assumptions on the external force f and the distributed damping Q. Then the results are extended to a more delicate problem involving also an internal dissipation of higher order, the so called strongly damped Kirchhoff system. Finally, the study is further extended to strongly damped Kirchhoff–polyharmonic systems, which model several interesting problems of the Woinowsky–Krieger type.
Asymptotic stability for Nonlinear Kirchhoff Systems
AUTUORI, GIUSEPPINA;PUCCI, Patrizia;SALVATORI, Maria Cesarina
2009
Abstract
We study the asymptotic stability for solutions of the nonlinear damped Kirchhoff system, with homogeneous Dirichlet boundary conditions, under fairly natural assumptions on the external force f and the distributed damping Q. Then the results are extended to a more delicate problem involving also an internal dissipation of higher order, the so called strongly damped Kirchhoff system. Finally, the study is further extended to strongly damped Kirchhoff–polyharmonic systems, which model several interesting problems of the Woinowsky–Krieger type.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.