In this paper, the parametric estimation of Additive White Gaussian Noise is considered, when available data are obtained from a quantized noisy stimulus. The Cramér-Rao Lower Bound is derived, and the statistically efficiency of a maximum likelihood parametric estimator is discussed, along with the estimation algorithm proposed in IEEE standard IEEE 1241

Noise Parameter Estimation From Quantized Data

MOSCHITTA, Antonio;CARBONE, Paolo
2006

Abstract

In this paper, the parametric estimation of Additive White Gaussian Noise is considered, when available data are obtained from a quantized noisy stimulus. The Cramér-Rao Lower Bound is derived, and the statistically efficiency of a maximum likelihood parametric estimator is discussed, along with the estimation algorithm proposed in IEEE standard IEEE 1241
2006
9781424402496
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/158652
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact