A kinetic and product study of the 3-cyano-N-methylquinolinium photoinduced monoelectronic oxidation of a series of β-hydroxysulfoxides has been carried out to investigate the competition between Cα-S and Cα-Cβ bond cleavage within the corresponding cation radicals. Laser flash photolysis experiments unequivocally established the formation of sulfoxide cation radicals showing their absorption band (λmax ≈ 520 nm) and that of 3-CN-NMQ• (λmax ≈ 390 nm). Steadystate photolysis experiments suggest that, in contrast to what previously observed for alkyl phenyl sulfoxide cation radicals that exclusively undergo Cα-S bond cleavage, the presence of a β-hydroxy group makes, in some cases, the Cα-Cβ scission competitive. The factors governing this competition seem to depend on the relative stability of the fragments formed from the two bond scissions. Substitution of the β-OH group with -OMe did not dramatically change the reactivity pattern of the cation radicals thus suggesting that the observed favorable effect of the hydroxy group on the Cα-Cβ bond cleavage mainly resides on its capability to stabilize the carbocation formed upon this scission.

Competition between Cα-S and Cα-Cβ bond cleavage in β-Hydroxysulfoxides cation radicals generated by photoinduced electron transfer

Tiziana Del Giacco;
2021

Abstract

A kinetic and product study of the 3-cyano-N-methylquinolinium photoinduced monoelectronic oxidation of a series of β-hydroxysulfoxides has been carried out to investigate the competition between Cα-S and Cα-Cβ bond cleavage within the corresponding cation radicals. Laser flash photolysis experiments unequivocally established the formation of sulfoxide cation radicals showing their absorption band (λmax ≈ 520 nm) and that of 3-CN-NMQ• (λmax ≈ 390 nm). Steadystate photolysis experiments suggest that, in contrast to what previously observed for alkyl phenyl sulfoxide cation radicals that exclusively undergo Cα-S bond cleavage, the presence of a β-hydroxy group makes, in some cases, the Cα-Cβ scission competitive. The factors governing this competition seem to depend on the relative stability of the fragments formed from the two bond scissions. Substitution of the β-OH group with -OMe did not dramatically change the reactivity pattern of the cation radicals thus suggesting that the observed favorable effect of the hydroxy group on the Cα-Cβ bond cleavage mainly resides on its capability to stabilize the carbocation formed upon this scission.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1588338
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact