The homogeneous Bethe-Salpeter equation (hBSE), describing a bound system in a genuinely relativistic quantum-field theory framework, was solved for the first time by using a D-Wave quantum annealer. After applying standard techniques of discretization, the hBSE, in ladder approximation, can be formally transformed in a generalized eigenvalue problem (GEVP), with two square matrices: one symmetric and the other nonsymmetric. The latter matrix poses the challenge of obtaining a suitable formal approach for investigating the nonsymmetric GEVP by means of a quantum annealer, i.e., to recast it as a quadratic unconstrained binary optimization problem. A broad numerical analysis of the proposed algorithms, applied to matrices of dimension up to 64, was carried out by using both the PROPRIETARY simulated-annealing package and the D-Wave Advantage 4.1 system. The numerical results very nicely compare with those obtained with standard classical algorithms, and also show interesting scalability features.

Solving the homogeneous Bethe-Salpeter equation with a quantum annealer

Fornetti, Filippo;Scopetta, Sergio;
2024

Abstract

The homogeneous Bethe-Salpeter equation (hBSE), describing a bound system in a genuinely relativistic quantum-field theory framework, was solved for the first time by using a D-Wave quantum annealer. After applying standard techniques of discretization, the hBSE, in ladder approximation, can be formally transformed in a generalized eigenvalue problem (GEVP), with two square matrices: one symmetric and the other nonsymmetric. The latter matrix poses the challenge of obtaining a suitable formal approach for investigating the nonsymmetric GEVP by means of a quantum annealer, i.e., to recast it as a quadratic unconstrained binary optimization problem. A broad numerical analysis of the proposed algorithms, applied to matrices of dimension up to 64, was carried out by using both the PROPRIETARY simulated-annealing package and the D-Wave Advantage 4.1 system. The numerical results very nicely compare with those obtained with standard classical algorithms, and also show interesting scalability features.
2024
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1588732
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact