Encapsulated vitro-derived apical buds of M.26 apple rootstock (Malus pumila Mill) can be employed for the formation of the synthetic seed. Satisfactory levels of conversion (plantlets from synthetic seed) can be achieved if there are adequate (i) rooting induction treatment, (ii) protocol of encapsulation, and (iii) nutritive and environmental conditions. For capsule manufacturing, sodium alginate is largely used; however, this is excessively permeable with loss of the nutritive substances (artificial endosperm) and/or dehydration risks during conservation and transport causing detrimental effects on the synthetic seed conversion and on the plantlet's growth. In order to overcome these problems, two experiments were carried out comparing simple encapsulation in alginate with double encapsulation, and with encapsulation-coating procedures. The presence of a second layer of alginate (double encapsulation) and of a thin external coating layer over the alginate (encapsulation-coating) did not show any detrimental effects on viability, sprouting and regrowth of the encapsulated microcuttings. Satisfactory conversion (70%) was reached with the encapsulation-coating procedure, whereas the double and simple encapsulation converted less than 40% of the synthetic seed. The effect of the addition to the capsule of an anti-microbial substance (Plant Preservative Mixture - PPM) was examined: it did not compromise the conversion of the encapsulated microcuttings sown in ex-vitro non-aseptic conditions.
Effects of double encapsulation and coating on synthetic seed conversion in M.26 apple rootstock.
MICHELI, Maurizio;STANDARDI, Alvaro
2002
Abstract
Encapsulated vitro-derived apical buds of M.26 apple rootstock (Malus pumila Mill) can be employed for the formation of the synthetic seed. Satisfactory levels of conversion (plantlets from synthetic seed) can be achieved if there are adequate (i) rooting induction treatment, (ii) protocol of encapsulation, and (iii) nutritive and environmental conditions. For capsule manufacturing, sodium alginate is largely used; however, this is excessively permeable with loss of the nutritive substances (artificial endosperm) and/or dehydration risks during conservation and transport causing detrimental effects on the synthetic seed conversion and on the plantlet's growth. In order to overcome these problems, two experiments were carried out comparing simple encapsulation in alginate with double encapsulation, and with encapsulation-coating procedures. The presence of a second layer of alginate (double encapsulation) and of a thin external coating layer over the alginate (encapsulation-coating) did not show any detrimental effects on viability, sprouting and regrowth of the encapsulated microcuttings. Satisfactory conversion (70%) was reached with the encapsulation-coating procedure, whereas the double and simple encapsulation converted less than 40% of the synthetic seed. The effect of the addition to the capsule of an anti-microbial substance (Plant Preservative Mixture - PPM) was examined: it did not compromise the conversion of the encapsulated microcuttings sown in ex-vitro non-aseptic conditions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.