This paper concerns an optimal control problem defined on a class of switched-mode hybrid dynamical systems. The system's mode is changed (switched) whenever the state variable crosses a certain surface in the state space, henceforth called a switching surface. These switching surfaces are parameterized by finite-dimensional vectors called the switching parameters. The optimal control problem is to minimize a cost functional, defined on the state trajectory, as a function of the switching parameters. The paper derives the gradient of the cost functional in a costate-based formula that reflects the special structure of hybrid systems. It then uses the formula in a gradient-descent algorithm for solving an obstacle-avoidance problem in robotics.
Optimal Control of Switching Surfaces in Hybrid Dynamical Systems
BOCCADORO, MAURO;
2005
Abstract
This paper concerns an optimal control problem defined on a class of switched-mode hybrid dynamical systems. The system's mode is changed (switched) whenever the state variable crosses a certain surface in the state space, henceforth called a switching surface. These switching surfaces are parameterized by finite-dimensional vectors called the switching parameters. The optimal control problem is to minimize a cost functional, defined on the state trajectory, as a function of the switching parameters. The paper derives the gradient of the cost functional in a costate-based formula that reflects the special structure of hybrid systems. It then uses the formula in a gradient-descent algorithm for solving an obstacle-avoidance problem in robotics.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.