We have observed the late Class I protostellar source Elias 29 at a spatial resolution of 70 au with the Atacama Large Millimeter/submillimeter Array as part of the FAUST Large Program. We focus on the line emission of SO, while that of 34SO, C18O, CS, SiO, H13CO+, and DCO+ are used supplementarily. The spatial distribution of the SO rotational temperature (Trot(SO)) is evaluated by using the intensity ratio of its two rotational excitation lines. Besides in the vicinity of the protostar, two hot spots are found at a distance of 500 au from the protostar; Trot(SO) locally rises to 53−15+25 K at the interaction point of the outflow and the southern ridge, and 72−29+66 K within the southeastern outflow probably due to a jet-driven bow shock. However, the SiO emission is not detected at these hot spots. It is likely that active gas accretion through the disk-like structure and onto the protostar still continues even at this evolved protostellar stage, at least sporadically, considering the outflow/jet activities and the possible infall motion previously reported. Interestingly, Trot(SO) is as high as 20-30 K even within the quiescent part of the southern ridge apart from the protostar by 500-1000 au without clear kinematic indication of current outflow/jet interactions. Such a warm condition is also supported by the low deuterium fractionation ratio of HCO+ estimated by using the H13CO+ and DCO+ lines. The B-type star HD147889 ∼0.5 pc away from Elias 29, previously suggested as a heating source for this region, is likely responsible for the warm condition of Elias 29.

Evidence for Jet/Outflow Shocks Heating the Environment around the Class I Protostellar Source Elias 29: FAUST XXI

Ceccarelli, Cecilia;Balucani, Nadia;
2025

Abstract

We have observed the late Class I protostellar source Elias 29 at a spatial resolution of 70 au with the Atacama Large Millimeter/submillimeter Array as part of the FAUST Large Program. We focus on the line emission of SO, while that of 34SO, C18O, CS, SiO, H13CO+, and DCO+ are used supplementarily. The spatial distribution of the SO rotational temperature (Trot(SO)) is evaluated by using the intensity ratio of its two rotational excitation lines. Besides in the vicinity of the protostar, two hot spots are found at a distance of 500 au from the protostar; Trot(SO) locally rises to 53−15+25 K at the interaction point of the outflow and the southern ridge, and 72−29+66 K within the southeastern outflow probably due to a jet-driven bow shock. However, the SiO emission is not detected at these hot spots. It is likely that active gas accretion through the disk-like structure and onto the protostar still continues even at this evolved protostellar stage, at least sporadically, considering the outflow/jet activities and the possible infall motion previously reported. Interestingly, Trot(SO) is as high as 20-30 K even within the quiescent part of the southern ridge apart from the protostar by 500-1000 au without clear kinematic indication of current outflow/jet interactions. Such a warm condition is also supported by the low deuterium fractionation ratio of HCO+ estimated by using the H13CO+ and DCO+ lines. The B-type star HD147889 ∼0.5 pc away from Elias 29, previously suggested as a heating source for this region, is likely responsible for the warm condition of Elias 29.
2025
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1595875
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact