BackgroundThe continuous emergence of SARS-CoV-2 variants and subvariants poses significant public health challenges. The latest designated subvariant JN.1, with all its descendants, shows more than 30 mutations in the spike gene. JN.1 has raised concerns due to its genomic diversity and its potential to enhance transmissibility and immune evasion. This study aims to analyse the molecular characteristics of JN.1-related lineages (JN.1*) identified in Italy from October 2023 to April 2024 and to evaluate the neutralization activity against JN.1 of a subsample of sera from individuals vaccinated with XBB.1.5 mRNA.MethodsThe genomic diversity of the spike gene of 794 JN.1* strain was evaluated and phylogenetic analysis was conducted to compare the distance to XBB.1.5. Moreover, serum neutralization assays were performed on a subsample of 19 healthcare workers (HCWs) vaccinated with the monovalent XBB.1.5 mRNA booster to assess neutralizing capacity against JN.1.ResultsSequence analysis displayed high spike variability between JN.1* and phylogenetic investigation confirmed a substantial differentiation between JN.1* and XBB.1.5 spike regions with 29 shared mutations, of which 17 were located within the RBD region. Pre-booster neutralization activity against JN.1 was observed in 42% of HCWs sera, increasing significantly post-booster, with all HCWs showing neutralization capacity three months after vaccination. A significant correlation was found between anti-trimeric Spike IgG levels and neutralizing titers against JN.1.ConclusionsThe study highlights the variability of JN.1* in Italy. Results on a subsample of sera from HCWs vaccinated with XBB.1.5 mRNA booster vaccine suggested enhanced neutralization activity against JN.1.

JN.1 variants circulating in Italy from October 2023 to April 2024: genetic diversity and immune recognition

Mencacci, Antonella
Membro del Collaboration Group
;
Camilloni, Barbara
Membro del Collaboration Group
;
2025

Abstract

BackgroundThe continuous emergence of SARS-CoV-2 variants and subvariants poses significant public health challenges. The latest designated subvariant JN.1, with all its descendants, shows more than 30 mutations in the spike gene. JN.1 has raised concerns due to its genomic diversity and its potential to enhance transmissibility and immune evasion. This study aims to analyse the molecular characteristics of JN.1-related lineages (JN.1*) identified in Italy from October 2023 to April 2024 and to evaluate the neutralization activity against JN.1 of a subsample of sera from individuals vaccinated with XBB.1.5 mRNA.MethodsThe genomic diversity of the spike gene of 794 JN.1* strain was evaluated and phylogenetic analysis was conducted to compare the distance to XBB.1.5. Moreover, serum neutralization assays were performed on a subsample of 19 healthcare workers (HCWs) vaccinated with the monovalent XBB.1.5 mRNA booster to assess neutralizing capacity against JN.1.ResultsSequence analysis displayed high spike variability between JN.1* and phylogenetic investigation confirmed a substantial differentiation between JN.1* and XBB.1.5 spike regions with 29 shared mutations, of which 17 were located within the RBD region. Pre-booster neutralization activity against JN.1 was observed in 42% of HCWs sera, increasing significantly post-booster, with all HCWs showing neutralization capacity three months after vaccination. A significant correlation was found between anti-trimeric Spike IgG levels and neutralizing titers against JN.1.ConclusionsThe study highlights the variability of JN.1* in Italy. Results on a subsample of sera from HCWs vaccinated with XBB.1.5 mRNA booster vaccine suggested enhanced neutralization activity against JN.1.
2025
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1596054
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact