: Secondary bile acids, lithocholic acid and deoxycholic acid (LCA and DCA), are dehydroxylated derivatives of primary bile acids. However, in addition to LCA and DCA the intestinal microbiota produced a variety of poorly characterized metabolites. Allo-LCA, a LCA metabolite, acts as a dual GPBAR1 agonist and RORγt inverse agonist and modulates intestinal immunity, although is not yet known whether allo-LCA exerts regulatory functions outside the intestine. In the present study we have therefore investigated whether administration of allo-LCA, 10 mg/kg/day, to mice administered a high fat/high fructose diet (HFD-F) and carbon tetrachloride (Ccl4), a model for metabolic dysfunction-associated steatohepatitis (MASH), protects from development of liver damage. In vitro allo-LCA functions as GPBAR1 agonist and RORγt inverse agonist and prevents macrophages M1 polarization and Th17 polarization of CD4 cells. In vivo studies, while exposure to a HFD-F/Ccl4 promoted insulin resistance and development of a pro-atherogenic lipid profile and liver steatosis and fibrosis, allo-LCA reversed this pattern by improving insulin sensitivity and liver lipid accumulation. The liver transcriptomic profile demonstrated that allo-LCA reversed the dysregulation of multiple pathways associated with immunological, inflammatory and metabolic signaling. Allo-LCA also restored bile acid homeostasis, reversing HFD/Ccl4-induced shifts in bile acid pool composition and restored adipose tissue histopathology and function by reducing the expression of leptin and resistin, two pro-inflammatory adipokines, and restored a healthier composition of the intestinal microbiota. In conclusion, present results expand on the characterization of entero-hepatic signaling and suggest that allo-LCA, a microbial metabolite, might have therapeutic potential in liver diseases.

Allo-lithocholic acid, a microbiome derived secondary bile acid, attenuates liver fibrosis

Biagioli, Michele;Giorgio, Cristina Di;Massa, Carmen;Bellini, Rachele;Bordoni, Martina;Urbani, Ginevra;Lachi, Ginevra;Distrutti, Eleonora;Fiorucci, Stefano
2025

Abstract

: Secondary bile acids, lithocholic acid and deoxycholic acid (LCA and DCA), are dehydroxylated derivatives of primary bile acids. However, in addition to LCA and DCA the intestinal microbiota produced a variety of poorly characterized metabolites. Allo-LCA, a LCA metabolite, acts as a dual GPBAR1 agonist and RORγt inverse agonist and modulates intestinal immunity, although is not yet known whether allo-LCA exerts regulatory functions outside the intestine. In the present study we have therefore investigated whether administration of allo-LCA, 10 mg/kg/day, to mice administered a high fat/high fructose diet (HFD-F) and carbon tetrachloride (Ccl4), a model for metabolic dysfunction-associated steatohepatitis (MASH), protects from development of liver damage. In vitro allo-LCA functions as GPBAR1 agonist and RORγt inverse agonist and prevents macrophages M1 polarization and Th17 polarization of CD4 cells. In vivo studies, while exposure to a HFD-F/Ccl4 promoted insulin resistance and development of a pro-atherogenic lipid profile and liver steatosis and fibrosis, allo-LCA reversed this pattern by improving insulin sensitivity and liver lipid accumulation. The liver transcriptomic profile demonstrated that allo-LCA reversed the dysregulation of multiple pathways associated with immunological, inflammatory and metabolic signaling. Allo-LCA also restored bile acid homeostasis, reversing HFD/Ccl4-induced shifts in bile acid pool composition and restored adipose tissue histopathology and function by reducing the expression of leptin and resistin, two pro-inflammatory adipokines, and restored a healthier composition of the intestinal microbiota. In conclusion, present results expand on the characterization of entero-hepatic signaling and suggest that allo-LCA, a microbial metabolite, might have therapeutic potential in liver diseases.
2025
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1596576
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact