We prove maximum and comparison principles for weak distributional solutions of quasilinear, possibly singular or degenerate, elliptic differential inequalities in divergence form on complete Riemannian manifolds. A new definition of ellipticity for nonlinear operators on Riemannian manifolds is introduced, covering the standard important examples. As an application, uniqueness results for some related boundary value problems are presented.
Quasilinear elliptic inequalities on complete Riemannian manifolds
MUGNAI, Dimitri;PUCCI, Patrizia
2007
Abstract
We prove maximum and comparison principles for weak distributional solutions of quasilinear, possibly singular or degenerate, elliptic differential inequalities in divergence form on complete Riemannian manifolds. A new definition of ellipticity for nonlinear operators on Riemannian manifolds is introduced, covering the standard important examples. As an application, uniqueness results for some related boundary value problems are presented.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.