The adsorption and catalytic activity of myoglobin (Mb) on zirconium phosphonates (alfa-zirconium benzenephosphonate (alfa-ZrBP), alfa-zirconium carboxyethanephosphonate (alfa-ZrCEP), and a novel layered zirconium fluoride aminooctyl-N,N-bis(methylphosphonate) (ZrC8)) were investigated. The maximum adsorption was reached after 16 h of contact and was greater on hydrophobic supports such as alfa-ZrBP and ZrC8 compared to hydrophilic supports such as alfa-ZrCEP. The equilibrium adsorption isotherms fitted the Langmuir equation, suggesting the presence of a monolayer of protein molecules on the support surfaces. The catalytic activities of free Mb and of the obtained biocomposites were studied in terms of the oxidation of two aromatic substrates, o-phenylenediamine and 2-methoxyphenol (guaiacol), by hydrogen peroxide. The oxidation catalyzed by immobilized myoglobin followed the Michaelis-Menten kinetics, similar to oxidation by free Mb. The kinetic parameters, kcat and KM, were significantly affected by the adsorption process. Mb/alfa-ZrCEP was the most efficient biocatalyst obtained, probably because of the hydrophilic nature of the support. The effect of immobilization on the stability of Mb toward inactivation by hydrogen peroxide was also investigated, and an increased resistance was found. The biocomposites obtained can be stored at 4 °C for months without a significant loss of catalytic activity

Catalytic Activity of Myoglobin Immobilized on Zirconium Phosphonates

BELLEZZA, Francesca;CIPICIANI, Antonio;COSTANTINO, Umberto;
2004

Abstract

The adsorption and catalytic activity of myoglobin (Mb) on zirconium phosphonates (alfa-zirconium benzenephosphonate (alfa-ZrBP), alfa-zirconium carboxyethanephosphonate (alfa-ZrCEP), and a novel layered zirconium fluoride aminooctyl-N,N-bis(methylphosphonate) (ZrC8)) were investigated. The maximum adsorption was reached after 16 h of contact and was greater on hydrophobic supports such as alfa-ZrBP and ZrC8 compared to hydrophilic supports such as alfa-ZrCEP. The equilibrium adsorption isotherms fitted the Langmuir equation, suggesting the presence of a monolayer of protein molecules on the support surfaces. The catalytic activities of free Mb and of the obtained biocomposites were studied in terms of the oxidation of two aromatic substrates, o-phenylenediamine and 2-methoxyphenol (guaiacol), by hydrogen peroxide. The oxidation catalyzed by immobilized myoglobin followed the Michaelis-Menten kinetics, similar to oxidation by free Mb. The kinetic parameters, kcat and KM, were significantly affected by the adsorption process. Mb/alfa-ZrCEP was the most efficient biocatalyst obtained, probably because of the hydrophilic nature of the support. The effect of immobilization on the stability of Mb toward inactivation by hydrogen peroxide was also investigated, and an increased resistance was found. The biocomposites obtained can be stored at 4 °C for months without a significant loss of catalytic activity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/160067
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact