The environmental impact of beef cattle production varies significantly across farming systems, influenced by factors like feed, management practices, and land use. By applying the LCA perspective with “from cradle to farm gate” boundaries and using the CAP’2ER® tool, this study evaluates the carbon footprint of two farming models in Italy: a semi-extensive cow-calf beef production and an intensive farm for calf fattening. The carbon footprint was calculated using two functional units: kilograms of live meat gross production (LMGP), and a monetary unit. The first model showed a lower carbon footprint, with 13.4 kg CO2eq/kg LMGP and 1.96 kg CO2eq/EUR, compared to the second one 19.2 kg CO2eq/kg LMGP and 5.20 kg CO2eq/EUR. The use of monetary value as a functional unit is rarely explored in the literature, since most studies have focused on weight-based metrics, favoring intensive systems with longer lifecycles compared to extensive farming. Furthermore, contrary to findings in the literature for semi-extensive systems like adaptive multi-paddock grazing, the tool used for the calculation did not detect any carbon sequestration. These findings highlight the need for further investigation into diverse functional units to assess the environmental and economic performance of farming systems. Expanding this approach could inform policies and consumer decisions, promoting sustainable beef production aligned with climate goals and the European Green Deal agenda.

Comparative Techno-Economic and Carbon Footprint Analysis of Semi-Extensive and Intensive Beef Farming

Frascarelli A.;Ciliberti S.
;
Lilli S. M.;Pascolini P.;
2025

Abstract

The environmental impact of beef cattle production varies significantly across farming systems, influenced by factors like feed, management practices, and land use. By applying the LCA perspective with “from cradle to farm gate” boundaries and using the CAP’2ER® tool, this study evaluates the carbon footprint of two farming models in Italy: a semi-extensive cow-calf beef production and an intensive farm for calf fattening. The carbon footprint was calculated using two functional units: kilograms of live meat gross production (LMGP), and a monetary unit. The first model showed a lower carbon footprint, with 13.4 kg CO2eq/kg LMGP and 1.96 kg CO2eq/EUR, compared to the second one 19.2 kg CO2eq/kg LMGP and 5.20 kg CO2eq/EUR. The use of monetary value as a functional unit is rarely explored in the literature, since most studies have focused on weight-based metrics, favoring intensive systems with longer lifecycles compared to extensive farming. Furthermore, contrary to findings in the literature for semi-extensive systems like adaptive multi-paddock grazing, the tool used for the calculation did not detect any carbon sequestration. These findings highlight the need for further investigation into diverse functional units to assess the environmental and economic performance of farming systems. Expanding this approach could inform policies and consumer decisions, promoting sustainable beef production aligned with climate goals and the European Green Deal agenda.
2025
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1602218
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact