This paper provides interpolation and approximation techniques for continuous functions defined on an irregular grid within a box-domain of Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>{d}$$\end{document}, using a new family of neural networks interpolation operators based on Lagrange polynomials. The approximation error is estimated by using higher order moduli of smoothness of the functions considered.
Higher Order Convergence of a Multivariate Neural Network Interpolation Operator for Irregular Grid
Costarelli D.;Piconi M.;
2025
Abstract
This paper provides interpolation and approximation techniques for continuous functions defined on an irregular grid within a box-domain of Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>{d}$$\end{document}, using a new family of neural networks interpolation operators based on Lagrange polynomials. The approximation error is estimated by using higher order moduli of smoothness of the functions considered.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


