Background: Differentiating Parkinson’s disease (PD) from essential tremor (ET) is often challenging, especially in early or atypical cases. Dopamine transporter (DAT) single-photon emission computed tomography (SPECT) with 123I-Ioflupane supports diagnosis, and semi-quantitative tools such as DaTQUANT® and BasGanV2™ provide objective measures. This study compared their diagnostic performance when integrated with supervised machine learning. Methods: We retrospectively analysed 123I-Ioflupane SPECT scans from 169 patients (133 PD, 36 ET). Semi-quantitative analysis was performed using DaTQUANT® v2.0 and BasGanV2™ v.2. Classification tree (ClT), k-nearest neighbour (k-NN), and support vector machine (SVM) models were trained and validated with stratified shuffle split (250 iterations). Diagnostic accuracy was compared between the two software packages. Results: All classifiers reliably distinguished PD from ET. DaTQUANT® consistently achieved higher accuracy than BasGanV2™: 93.8%, 93.2%, and 94.5% for ClT, k-NN, and SVM, respectively, versus 90.9%, 91.7%, and 91.9% for BasGanV2™ (p < 0.001). Sensitivity and specificity were also consistently higher for DaTQUANT® than BasGanV2. Class imbalance (PD > ET) was addressed using Synthetic Minority Over-sampling Technique (SMOTE). Conclusions: Machine learning analysis of 123I-Ioflupane SPECT enhances differentiation between PD and ET. DaTQUANT® outperformed BasGanV2™, suggesting greater suitability for AI-driven decision support. These findings support the integration of semi-quantitative and AI-based approaches into clinical workflows and highlight the need for harmonised methodologies in movement disorder imaging.

Diagnostic accuracy of DaTQUANT® versus BasGanV2™ for 123I-Ioflupane brain SPECT: A machine learning-based differentiation of Parkinson’s disease and essential tremor

Barbara Palumbo
;
Francesco Bianconi;Mario Luca Fravolini;
2025

Abstract

Background: Differentiating Parkinson’s disease (PD) from essential tremor (ET) is often challenging, especially in early or atypical cases. Dopamine transporter (DAT) single-photon emission computed tomography (SPECT) with 123I-Ioflupane supports diagnosis, and semi-quantitative tools such as DaTQUANT® and BasGanV2™ provide objective measures. This study compared their diagnostic performance when integrated with supervised machine learning. Methods: We retrospectively analysed 123I-Ioflupane SPECT scans from 169 patients (133 PD, 36 ET). Semi-quantitative analysis was performed using DaTQUANT® v2.0 and BasGanV2™ v.2. Classification tree (ClT), k-nearest neighbour (k-NN), and support vector machine (SVM) models were trained and validated with stratified shuffle split (250 iterations). Diagnostic accuracy was compared between the two software packages. Results: All classifiers reliably distinguished PD from ET. DaTQUANT® consistently achieved higher accuracy than BasGanV2™: 93.8%, 93.2%, and 94.5% for ClT, k-NN, and SVM, respectively, versus 90.9%, 91.7%, and 91.9% for BasGanV2™ (p < 0.001). Sensitivity and specificity were also consistently higher for DaTQUANT® than BasGanV2. Class imbalance (PD > ET) was addressed using Synthetic Minority Over-sampling Technique (SMOTE). Conclusions: Machine learning analysis of 123I-Ioflupane SPECT enhances differentiation between PD and ET. DaTQUANT® outperformed BasGanV2™, suggesting greater suitability for AI-driven decision support. These findings support the integration of semi-quantitative and AI-based approaches into clinical workflows and highlight the need for harmonised methodologies in movement disorder imaging.
2025
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1604917
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact