In this paper, we introduce the nonlinear exponential Kantorovich sampling series. We establish pointwise and uniform convergence properties and a nonlinear asymptotic formula of the Voronovskaja-type given in terms of the limsup. Furthermore, we extend these convergence results to Mellin-Orlicz spaces with respect to the logarithmic (Haar) measure. Quantitative results are also given, using the log-modulus of continuity and the log-modulus of smoothness, respectively, for log-uniformly continuous functions and for functions in Mellin-Orlicz spaces. Consequently, the qualitative order of convergence can be obtained in case of functions belonging to suitable Lipschitz (log-H & ouml;lderian) classes.

Advancements in nonlinear exponential sampling: convergence, quantitative analysis and Voronovskaya-type formula

Costarelli D.
;
Natale M.
2025

Abstract

In this paper, we introduce the nonlinear exponential Kantorovich sampling series. We establish pointwise and uniform convergence properties and a nonlinear asymptotic formula of the Voronovskaja-type given in terms of the limsup. Furthermore, we extend these convergence results to Mellin-Orlicz spaces with respect to the logarithmic (Haar) measure. Quantitative results are also given, using the log-modulus of continuity and the log-modulus of smoothness, respectively, for log-uniformly continuous functions and for functions in Mellin-Orlicz spaces. Consequently, the qualitative order of convergence can be obtained in case of functions belonging to suitable Lipschitz (log-H & ouml;lderian) classes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1605775
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact