We provide a general estimate for the number of irreducible components of a Chow variety, the variety that parametrizes algebraic cycles of given dimension and degree contained in a projective variety. The result is then applied to obtain an upper bound for the finite number of surfaces of general type that are images of a fixed surface.

Complexity of Chow varieties and number of morphisms on surfaces of general type

GUERRA, Lucio
1999

Abstract

We provide a general estimate for the number of irreducible components of a Chow variety, the variety that parametrizes algebraic cycles of given dimension and degree contained in a projective variety. The result is then applied to obtain an upper bound for the finite number of surfaces of general type that are images of a fixed surface.
1999
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/160603
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact