Excessive nitrogen (N) fertilizer usage in agriculture has prompted the exploration of sustainable strategies to enhance nitrogen use efficiency (NUE) while maintaining crop yield and quality. Processed tomatoes (Solanum lycopersicum L.) were grown for two years (2023 and 2024) following a two-way factorial randomized complete block (RCBD) design, considering three biostimulants and three N regimes as two factors, to assess their morphophysiological, biochemical, anatomical and yield performances. Nitrogen application significantly influenced biomass accumulation, the leaf area index (LAI), nitrogen uptake and yield with notable comparable values between reduced and optimal nitrogen dose, indicating improved nitrogen use efficiency. Biostimulants showed limited effects alone but enhanced plant performance under reduced nitrogen conditions, particularly improving chlorophyll content, crop growth, N uptake, yield and anatomical adaptations. Moreover, compared to 2024, biostimulant application enhanced tomato growth more evidently in 2023 due to environmental variations, likely due to the occurrence of stress conditions. Importantly, biostimulants, together with N regimes, i.e., optimal and reduced doses, showed improved anatomical traits, especially regarding leaf thickness and thickness between the two epidermises, indicating adaptive responses that may support sustained productivity under N-limited conditions. Among the biostimulants used, the processed tomatoes responded better to protein hydrolysate and endophytic N-fixing bacteria than to seaweed extract. These findings suggest that although biostimulants alone were not affected, integrating them with reduced N fertilization provides a viable strategy for optimizing tomato production, conserving resources and minimizing the environmental impact without compromising yield or quality.

A Multifaceted Approach to Optimizing Processed Tomato Production: Investigating the Combined Effects of Biostimulants and Reduced Nitrogen Fertilization

Farneselli M.
;
Falcinelli B.;Akram M. Z.;Cimarelli S.;Cinti E.;Carbone F.;Pannacci E.;
2025

Abstract

Excessive nitrogen (N) fertilizer usage in agriculture has prompted the exploration of sustainable strategies to enhance nitrogen use efficiency (NUE) while maintaining crop yield and quality. Processed tomatoes (Solanum lycopersicum L.) were grown for two years (2023 and 2024) following a two-way factorial randomized complete block (RCBD) design, considering three biostimulants and three N regimes as two factors, to assess their morphophysiological, biochemical, anatomical and yield performances. Nitrogen application significantly influenced biomass accumulation, the leaf area index (LAI), nitrogen uptake and yield with notable comparable values between reduced and optimal nitrogen dose, indicating improved nitrogen use efficiency. Biostimulants showed limited effects alone but enhanced plant performance under reduced nitrogen conditions, particularly improving chlorophyll content, crop growth, N uptake, yield and anatomical adaptations. Moreover, compared to 2024, biostimulant application enhanced tomato growth more evidently in 2023 due to environmental variations, likely due to the occurrence of stress conditions. Importantly, biostimulants, together with N regimes, i.e., optimal and reduced doses, showed improved anatomical traits, especially regarding leaf thickness and thickness between the two epidermises, indicating adaptive responses that may support sustained productivity under N-limited conditions. Among the biostimulants used, the processed tomatoes responded better to protein hydrolysate and endophytic N-fixing bacteria than to seaweed extract. These findings suggest that although biostimulants alone were not affected, integrating them with reduced N fertilization provides a viable strategy for optimizing tomato production, conserving resources and minimizing the environmental impact without compromising yield or quality.
2025
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1606374
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact