For every pair (C,K) of groupoid enriched categories, we define two related categories S(C,K) and SS(C,K). In the case (C,K)=(TOP,ANR) they are isomorphic, respectively, to the classical shape category Sh(TOP) of Mardešić and Segal and to the strongshape category of topological spaces SSh(1)(TOP) of height 1, defined by Lisicá and Mardešić. Moreover, for (C,K)=(CM,ANR), where CM is the category of compact metric spaces, there is an isomorphism SSh(CM)≅SS(CM,ANR). A new characterization of topological strongshape equivalences is also given.

2-Categorical Aspect of Strong Shape

STRAMACCIA, Luciano
2006

Abstract

For every pair (C,K) of groupoid enriched categories, we define two related categories S(C,K) and SS(C,K). In the case (C,K)=(TOP,ANR) they are isomorphic, respectively, to the classical shape category Sh(TOP) of Mardešić and Segal and to the strongshape category of topological spaces SSh(1)(TOP) of height 1, defined by Lisicá and Mardešić. Moreover, for (C,K)=(CM,ANR), where CM is the category of compact metric spaces, there is an isomorphism SSh(CM)≅SS(CM,ANR). A new characterization of topological strongshape equivalences is also given.
2006
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/160656
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact