Olive cultivation is one of the most widespread agro-industrial activities in the Mediterranean area. However, required pretreatments often affect the anaerobic digestion process, promoting or inhibiting the overall yield. Therefore, the efficiency of Anaerobic Digestion (AD) processes cannot be established in advance but needs to be experimentally validated for each biomass-pretreatment combination. Following the present purpose, these biomasses were firstly treated: the olive pomace (OP) with a procedure based on the use of an ionic liquid (IL) composed of triethylamine and sulfuric acid [Et3N][HSO4] to remove hemicellulose and lignin and recover the insolubilized OP, while olive mill wastewater (OW) was processed via freeze-drying. The resulting materials, the pulp from olive pomace (POP) and freeze-dried OW (FDOW), were then digested using lab-scale anaerobic reactors. The biogas production was then compared with the quantity obtained by digesting the same untreated biomasses (OW and OP). The FDOW showed the highest biogas production due to the freeze-drying treatment that led to some morphological and structural surface modifications of OW (respectively, 658 mL vs. 79 mL/g for the two matrices), prompting microorganism activity. Conversely, the method based on the use of IL significantly reduced the nitrogen content of POP, thus resulting in the lowest biogas production, which ceased by the second day. To address this issue, we co-digested POP with the brewery’s spent grain, a biomass rich in nitrogen. This step enhanced the biogas yield of POP, resulting in an extended anaerobic digestion period and the production of 466 mL/g. Additionally, we tested FDOW in co-digestion with BSG to evaluate improvements in production. The codigestion of the two matrices increased the biogas yield of FDOW from 944 to 1131 mL/g.
Biogas Production from Olive Oil Mill Byproducts: A Comparative Study of Two Treatments for Pursuing a Biorefinery Approach
Jessica Di Mario;Antonella Ranucci;Alberto Maria Gambelli
;Marco Rallini;Dario Priolo;Debora Puglia;Daniele Del Buono;Giovanni Gigliotti
2025
Abstract
Olive cultivation is one of the most widespread agro-industrial activities in the Mediterranean area. However, required pretreatments often affect the anaerobic digestion process, promoting or inhibiting the overall yield. Therefore, the efficiency of Anaerobic Digestion (AD) processes cannot be established in advance but needs to be experimentally validated for each biomass-pretreatment combination. Following the present purpose, these biomasses were firstly treated: the olive pomace (OP) with a procedure based on the use of an ionic liquid (IL) composed of triethylamine and sulfuric acid [Et3N][HSO4] to remove hemicellulose and lignin and recover the insolubilized OP, while olive mill wastewater (OW) was processed via freeze-drying. The resulting materials, the pulp from olive pomace (POP) and freeze-dried OW (FDOW), were then digested using lab-scale anaerobic reactors. The biogas production was then compared with the quantity obtained by digesting the same untreated biomasses (OW and OP). The FDOW showed the highest biogas production due to the freeze-drying treatment that led to some morphological and structural surface modifications of OW (respectively, 658 mL vs. 79 mL/g for the two matrices), prompting microorganism activity. Conversely, the method based on the use of IL significantly reduced the nitrogen content of POP, thus resulting in the lowest biogas production, which ceased by the second day. To address this issue, we co-digested POP with the brewery’s spent grain, a biomass rich in nitrogen. This step enhanced the biogas yield of POP, resulting in an extended anaerobic digestion period and the production of 466 mL/g. Additionally, we tested FDOW in co-digestion with BSG to evaluate improvements in production. The codigestion of the two matrices increased the biogas yield of FDOW from 944 to 1131 mL/g.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


