Two drinking water production plants located in North Italy, collecting water from the River Po (Plants 1 and 2) were chosen for this study. Water samples were collected before and after the disinfection process and at two points along the piping system. Water samples were concentrated by the solid-phase extraction system and injected intraperitoneally into specimens of Cyprinus carpio. The concentration of water samples was 3 l/equiv. In order to assess the effects of the water samples on carp liver, total glutathione and glutathione-dependent enzymes, such as glutathione S-transferase, glutathione peroxidase, glutathione reductase and glyoxalase I, were measured following this treatment for 6 days at two experimental times (3 and 6 days). Both water plant-treated carp showed a general increase of the enzymatic activities of glutathione S-transferase, and glutathione reductase which might be employed as potential biomarkers of oxidative stress induced by disinfected river water. Plant 1-treated carp showed higher glyoxalase I and glutathione levels and lower glutathione peroxidase activity. A depleted level of total glutathione and of glyoxalase I for specimens of water plant 2 (for both experimental times), without correlation with the distances in the pipeline, suggests that river plant water can also lead to potentially adverse effects on selected biochemical parameters in C. carpio.

Effects of concentrated drinking water on glutathione and glutathione-dependent enzymes in Cyprinus carpio L.

ELIA, Antonia Concetta
;
DOERR, Ambrosius J. Martin;TATICCHI, Maria Illuminata
2008

Abstract

Two drinking water production plants located in North Italy, collecting water from the River Po (Plants 1 and 2) were chosen for this study. Water samples were collected before and after the disinfection process and at two points along the piping system. Water samples were concentrated by the solid-phase extraction system and injected intraperitoneally into specimens of Cyprinus carpio. The concentration of water samples was 3 l/equiv. In order to assess the effects of the water samples on carp liver, total glutathione and glutathione-dependent enzymes, such as glutathione S-transferase, glutathione peroxidase, glutathione reductase and glyoxalase I, were measured following this treatment for 6 days at two experimental times (3 and 6 days). Both water plant-treated carp showed a general increase of the enzymatic activities of glutathione S-transferase, and glutathione reductase which might be employed as potential biomarkers of oxidative stress induced by disinfected river water. Plant 1-treated carp showed higher glyoxalase I and glutathione levels and lower glutathione peroxidase activity. A depleted level of total glutathione and of glyoxalase I for specimens of water plant 2 (for both experimental times), without correlation with the distances in the pipeline, suggests that river plant water can also lead to potentially adverse effects on selected biochemical parameters in C. carpio.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/161145
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact