We report on the transport properties of a system composed of single-wall carbon nanotubes (SWNTs) noncovalently linked to a new electrically conducting dendrimer poly(amidoamine) modified with a substituted naphthalenediimide (PAMAMC). SEM images show how the adsorption of the conducting dendrimer on SWNTs leads to the unroping of the bundles. The adsorption of PAMAMC molecules on SWNTs has been also investigated by electrical transport measurements. The electrical conductance of SWNTs drastically increases upon adsorption of conducting dendrimer. UV-Vis spectroscopy indicates that there was a modification in the electronic structure of the dendrimer as consequence of nanotube introduction while the appearance of new bands on the Raman spectra may suggest that metallic nanotubes are selectively functionalized.
Selective Interaction of Single-Walled Carbon Nanotubes with Conducting Dendrimer
VALENTINI, LUCA;ARMENTANO, ILARIA;KENNY, Jose Maria
2006
Abstract
We report on the transport properties of a system composed of single-wall carbon nanotubes (SWNTs) noncovalently linked to a new electrically conducting dendrimer poly(amidoamine) modified with a substituted naphthalenediimide (PAMAMC). SEM images show how the adsorption of the conducting dendrimer on SWNTs leads to the unroping of the bundles. The adsorption of PAMAMC molecules on SWNTs has been also investigated by electrical transport measurements. The electrical conductance of SWNTs drastically increases upon adsorption of conducting dendrimer. UV-Vis spectroscopy indicates that there was a modification in the electronic structure of the dendrimer as consequence of nanotube introduction while the appearance of new bands on the Raman spectra may suggest that metallic nanotubes are selectively functionalized.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.