The digital simulation of wind velocity fields, modeled as multivariate stationary Gaussian processes, is a widely adopted tool to generate the external input for response analysis of wind-sensitive nonlinear structures. The problem does not entail any theoretical difficulty, existing already a large number of well-established techniques, such as the accurate weighted amplitude wave superposition (WAWS) method. However, reducing the computational effort required by the WAWS method is sometimes necessary, especially when dealing with complex structures and high-dimensional simulation domains. In these cases, approximate formulasmust be adopted, which however require an appropriate tuning of some fundamental parameters in such a way to achieve an acceptable level of accuracy if compared to that obtained using the WAWS method. Among the different techniques available for this purpose, autoregressive (AR) filters and algorithms exploiting the proper orthogonal decomposition (POD) of the spectral matrix deserve a special attention. In this paper, a properly organized way for implementing stochastic wind simulation algorithms is outlined at first. Then, taking the WAWS method as a reference from the viewpoint of the accuracy of the simulated samples, a comparative study between POD-based and AR techniques is proposed, with a particular attention to computational effort and memory requirements.

Computer simulation of stochastic wind velocity fields for structural response analysis: comparisons and applications

UBERTINI, Filippo;
2010

Abstract

The digital simulation of wind velocity fields, modeled as multivariate stationary Gaussian processes, is a widely adopted tool to generate the external input for response analysis of wind-sensitive nonlinear structures. The problem does not entail any theoretical difficulty, existing already a large number of well-established techniques, such as the accurate weighted amplitude wave superposition (WAWS) method. However, reducing the computational effort required by the WAWS method is sometimes necessary, especially when dealing with complex structures and high-dimensional simulation domains. In these cases, approximate formulasmust be adopted, which however require an appropriate tuning of some fundamental parameters in such a way to achieve an acceptable level of accuracy if compared to that obtained using the WAWS method. Among the different techniques available for this purpose, autoregressive (AR) filters and algorithms exploiting the proper orthogonal decomposition (POD) of the spectral matrix deserve a special attention. In this paper, a properly organized way for implementing stochastic wind simulation algorithms is outlined at first. Then, taking the WAWS method as a reference from the viewpoint of the accuracy of the simulated samples, a comparative study between POD-based and AR techniques is proposed, with a particular attention to computational effort and memory requirements.
2010
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/161553
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? ND
social impact