The Symmetric Circulant Travelling Salesman Problem asks for the minimum cost tour in a symmetric circulant matrix. The computational complexity of this problem is not known – only upper and lower bounds have been determined. This paper provides a characterisation of the two-stripe case. Instances where the minimum cost of a tour is equal to either the upper or lower bound are recognised. A new construction providing a tour is proposed for the remaining instances, and this leads to a new upper bound that is closer than the previous one.
The Travelling Salesman Problem in Symmetric Circulant Matrices with Two Stripes
GERACE, Ivan;GRECO, FEDERICO
2008
Abstract
The Symmetric Circulant Travelling Salesman Problem asks for the minimum cost tour in a symmetric circulant matrix. The computational complexity of this problem is not known – only upper and lower bounds have been determined. This paper provides a characterisation of the two-stripe case. Instances where the minimum cost of a tour is equal to either the upper or lower bound are recognised. A new construction providing a tour is proposed for the remaining instances, and this leads to a new upper bound that is closer than the previous one.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.