The (maximal) exponent of a non-empty finite word is the ratio of its length to its period. Dejean (1972) conjectured that for any n >= 5 there exists an infinite word over n letters with no factor of exponent larger than n/(n - 1). We prove that this conjecture is true for n >= 33.

On Dejean's conjecture over large alphabets

CARPI, Arturo
2007

Abstract

The (maximal) exponent of a non-empty finite word is the ratio of its length to its period. Dejean (1972) conjectured that for any n >= 5 there exists an infinite word over n letters with no factor of exponent larger than n/(n - 1). We prove that this conjecture is true for n >= 33.
2007
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/161746
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 64
  • ???jsp.display-item.citation.isi??? 52
social impact