Background: The determination of cellular β-galactocerebrosidase activity is an established procedure to diagnose Krabbe disease and monitor the efficacy of gene/stem cell-based therapeutic approaches aimed at restoring defective enzymatic activity in patients or disease models. Current biochemical assays for β-galactocerebrosidase show high specificity but generally require large protein amounts from scanty sources such as hematopoietic or neural stem cells. We developed a novel assay based on the hypothesis that specific measurements of β-galactocerebrosidase activity can be performed following complete inhibition of β-galactosidase activity. Methods: We performed the assay using 2–7.5 μg of sample proteins with the artificial fluorogenic substrate 4-methylumbelliferone-β-galactopyranoside (1.5 mmol/L) resuspended in 0.1/0.2 mol/L citrate/phosphate buffer, pH 4.0, and AgNO3. Reactions were incubated for 30 min at 37 °C. Fluorescence of liberated 4-methylumbelliferone was measured on a spectrofluorometer (λex 360 nm, λem 446 nm). Results: AgNO3 was a competitive inhibitor of β-galactosidase [inhibition constant (Ki) = 0.12 μmol/L] and completely inhibited β-galactosidase activity when used at a concentration of 11 μmol/L. Under this condition, the β-galactocerebrosidase activity was preserved and could be specifically and accurately measured. The assay can detect β-galactocerebrosidase activity in as little as 2 μg cell protein extract or 7.5 μg tissue. Assay validation was performed using (a) brain tissues from wild-type and twitcher mice and (b) murine GALC−/− hematopoietic stem cells and neural precursor cells transduced by GALC-lentiviral vectors. Conclusions: The procedure is straightforward, rapid, and reproducible. Within a clinical context, our method unequivocally discriminated cells from healthy subjects and Krabbe patients and is therefore suitable for diagnostic applications.

Specific determination of beta-galactocerebrosidase activity via competitive inhibition of beta-galactosidase

MARTINO, Sabata
Writing – Review & Editing
;
TIRIBUZI, ROBERTO;TORTORI, ANDREA;LATTANZI, ANNALISA;ORLACCHIO, Aldo
2009

Abstract

Background: The determination of cellular β-galactocerebrosidase activity is an established procedure to diagnose Krabbe disease and monitor the efficacy of gene/stem cell-based therapeutic approaches aimed at restoring defective enzymatic activity in patients or disease models. Current biochemical assays for β-galactocerebrosidase show high specificity but generally require large protein amounts from scanty sources such as hematopoietic or neural stem cells. We developed a novel assay based on the hypothesis that specific measurements of β-galactocerebrosidase activity can be performed following complete inhibition of β-galactosidase activity. Methods: We performed the assay using 2–7.5 μg of sample proteins with the artificial fluorogenic substrate 4-methylumbelliferone-β-galactopyranoside (1.5 mmol/L) resuspended in 0.1/0.2 mol/L citrate/phosphate buffer, pH 4.0, and AgNO3. Reactions were incubated for 30 min at 37 °C. Fluorescence of liberated 4-methylumbelliferone was measured on a spectrofluorometer (λex 360 nm, λem 446 nm). Results: AgNO3 was a competitive inhibitor of β-galactosidase [inhibition constant (Ki) = 0.12 μmol/L] and completely inhibited β-galactosidase activity when used at a concentration of 11 μmol/L. Under this condition, the β-galactocerebrosidase activity was preserved and could be specifically and accurately measured. The assay can detect β-galactocerebrosidase activity in as little as 2 μg cell protein extract or 7.5 μg tissue. Assay validation was performed using (a) brain tissues from wild-type and twitcher mice and (b) murine GALC−/− hematopoietic stem cells and neural precursor cells transduced by GALC-lentiviral vectors. Conclusions: The procedure is straightforward, rapid, and reproducible. Within a clinical context, our method unequivocally discriminated cells from healthy subjects and Krabbe patients and is therefore suitable for diagnostic applications.
2009
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/161895
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 37
social impact