α-Mannosidosis is a lysosomal storage disorder which manifests itself in the excessive storage of mannose-containing oligosaccharides in the lysosomes of multiple peripheral tissues and in the brain. Here we report on the correction of storage in a mouse model of α-mannosidosis after intravenous administration of lysosomal acid α-mannosidase (LAMAN) from bovine kidney, and human and mouse recombinant LAMAN. The bovine and the human enzyme were barely phosphorylated, whereas the bulk of the mouse LAMAN contained mannose 6-phosphate recognition markers. The clearance decreased from bovine to human to mouse LAMAN with plasma half-times of 4, 8 and 12 min, respectively. The apparent half-life of the internalized enzyme was dependent on the enzyme source as well as tissue type and varied between 3 and 16 h. The corrective effect on the storage of neutral oligosaccharides was time-, tissue- and dose-dependent, and the effects were observed to be transient. After a single dose of LAMAN the maximum corrective effect was observed between 2 and 6 days after injection. In general the corrective effect of the human LAMAN was higher than that of the mouse LAMAN and lowest for the bovine LAMAN. Injection of 250 mU human LAMAN/g body weight followed by a subsequent injection 3.5 days later was sufficient to clear liver, kidney and heart from neutral oligosaccharides. Surprisingly a decrease in mannose containing oligosaccharides was also observed in the brain, with storage levels reported at <30% than that found in controls. These data clearly underline the efficacy of enzyme replacement therapy for the correction of storage in α-mannosidosis and suggest that this treatment can substantially decrease storage in the brain.

Efficacy of enzyme replacement therapy in alpha-mannosidosis mice: a preclinical animal study

BALDUCCI, CHIARA;ORLACCHIO, Aldo;BECCARI, Tommaso;
2004

Abstract

α-Mannosidosis is a lysosomal storage disorder which manifests itself in the excessive storage of mannose-containing oligosaccharides in the lysosomes of multiple peripheral tissues and in the brain. Here we report on the correction of storage in a mouse model of α-mannosidosis after intravenous administration of lysosomal acid α-mannosidase (LAMAN) from bovine kidney, and human and mouse recombinant LAMAN. The bovine and the human enzyme were barely phosphorylated, whereas the bulk of the mouse LAMAN contained mannose 6-phosphate recognition markers. The clearance decreased from bovine to human to mouse LAMAN with plasma half-times of 4, 8 and 12 min, respectively. The apparent half-life of the internalized enzyme was dependent on the enzyme source as well as tissue type and varied between 3 and 16 h. The corrective effect on the storage of neutral oligosaccharides was time-, tissue- and dose-dependent, and the effects were observed to be transient. After a single dose of LAMAN the maximum corrective effect was observed between 2 and 6 days after injection. In general the corrective effect of the human LAMAN was higher than that of the mouse LAMAN and lowest for the bovine LAMAN. Injection of 250 mU human LAMAN/g body weight followed by a subsequent injection 3.5 days later was sufficient to clear liver, kidney and heart from neutral oligosaccharides. Surprisingly a decrease in mannose containing oligosaccharides was also observed in the brain, with storage levels reported at <30% than that found in controls. These data clearly underline the efficacy of enzyme replacement therapy for the correction of storage in α-mannosidosis and suggest that this treatment can substantially decrease storage in the brain.
2004
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/161931
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact